
Université de lille
École Graduée MADIS-631

Thèse
pour obtenir le grade de :

Docteur de l’Université de Lille

dans la spécialité Informatique
par

Alexandre D’Hooge

Assisting Western Popular Music Guitar Practice and Tablature
Composition with Machine Learning

Assister la Pratique de la Guitare et la Composition de Tablatures en Musiques Actuelles
Occidentales par Apprentissage Automatique

Thèse soutenue le 9 octobre 2025 devant le jury composé de :

Gérard Assayag Directeur de Recherche, IRCAM (Rapporteur)
Romain Michon Chargé de Recherche (HDR), INRIA Lyon (Rapporteur)
Rémi Bardenet Directeur de Recherche CNRS, CRIStAL (Président du Jury)
Isabel Barbancho Professeure des Universités, (Examinatrice)

Universidad de Málaga
Dorien Herremans Professeure Associée, AMAAI, (Examinatrice)

Singapore University of Technology and Design
Louis Bigo Professeur des Universités, Bordeaux INP, (Co-Directeur)

Université de Bordeaux, LaBRI
Mathieu Giraud Directeur de Recherche CNRS, CRIStAL (Co-Directeur)
Ken Déguernel Chargé de Recherche CNRS, CRIStAL (Co-Encadrant)

Univ. Lille, UMR 9189 CRIStAL, F-59000 Lille, France
CNRS, UMR 9189, F-59000 Lille, France
Centrale Lille, F-59000 Lille, France

ii

Made with the novathesis template (Lourenço 2021).

„ “ Crazy, but that’s how it goes
Millions of people living as foes”

— Bob Daisley, Ozzy Osbourne, Randy Rhoads,

Crazy Train (Blizzard of Oz)

À mes parents.

Acknowledgements

I was expecting my PhD to be a harsh and lonely journey. Harsh it was for sure, but
it was far from lonely, and I am thankful to all the great persons that made my thesis all
the richer.

First of all, I would like to thank my reviewers, Gérard Assayag and Romain Michon,
for their time spent thoroughly reading this thesis, aswell as their feedback and interest in
mywork. Thank you also to my examiners, Isabel Barbancho, Rémi Bardenet, and Dorien
Herremans, for insightful and thought-provoking discussions.
Thank you to Jean-Louis Giavitto for agreeing to be in my first year’s CSI and helping me
refine the directions my research took.

I am especially grateful to my supervisors, for their support and trust in mywork, and
helping me improve and build trust in my own skills as a researcher.

Merci Kenpour ton regard critique (mais bienveillant !) surmon travail quim’a permis
de consolider sereinement articles et présentations. Merci également pour toutes ces très
riches discussions sur la musique, les jeux vidéo, la politique, ..., qui ont alimenté ma
curiosité et m’ont aussi fait grandir humainement.

Merci Mathieu de m’avoir accompagné pour que je m’investisse dans de nouveaux
projets, dans ma recherche comme dans la vie du labo. Tu as rendu mon expérience de
thèse bien plus riche.

Merci Louis de m’avoir accordé ta confiance pour cette thèse, pour ta présence bi-
enveillante et ton écoute de mes opinions, questionnements, difficultés et inquiétudes.
Merci d’avoir su m’accompagner et m’encadrer comme tu l’as fait.

Thanks to colleagues, interns and collaborators from Algomus and SCRIME, for the
great time spent together. Thanks Alex, Annick, Baptiste, Florence, Francesco, Joseph,
Léo, Louis C, Manu, Olivier, Patrice, Quentin, Rui, Vanessa Nina, Viet-Toan, Yann, and
Zakaria! It was a pleasure coming to work thanks to you all.

Merci aux collègues du labo et de la FST : Abbas, Jean-Christophe, Jean-Stéphane,
Justine et Laurentiu. C’était un plaisir de travailler et/ou échanger avec vous.

Merci Gilles et Yohann pour votre confiance. Je suis très fier d’avoir pu participer à
l’aventure du Guitar Social Club.

Merci à Arobas Music de m’avoir ouvert leurs portes, et en particulier à Nicolas pour
sa transparence et disponibilité pour discuter de Guitar Pro.

Merci bien sûr aux ami·es du club tricot/crochet. Je suis particulièrement reconnais-
sant pour Caleb, Clémence, Enzo, Karim, Madeleine, Marie-Eva, Oliver et Sara et pour
notre amitié malgré tout le temps que je passais loin de Lille.

While it was several years back, I am very grateful to Preeti Rao for welcomingme into
her lab in IITB during Summer 2019. This internship could be considered the beginning
of my career as a researcher in MIR! I also want to thank Krishna with whom I’ve worked
there, for being so helpful and for his great pedagogy.

I was also very lucky to meet many awesome humans throughout my PhD, remotely
or at conferences, and am very grateful for their kindness and friendship. Thanks to
Pierluigi for getting in touch with us and for the nice collaboration we had together, it
really boosted my confidence!

I want to thank Pedro S, who I looked up to throughout my thesis, for being such
a kind human. I loved our discussions as fellow guitarists and metalheads and really
appreciated how you managed to build a community around guitar tab research 🤘
Thanks also to Drew,Mathieu, Ruby and Xavier fromQMUL for great times at ISMIR and
SMC.

During my PhD, I spent 3 months at the Music Technology Group in Barcelona for a
research visit, and I first want to thank Xavier Serra for welcoming me in the lab. It was
an amazing time and I’m so grateful for all the close friends I made during my stay. For
great times in and out of the lab, many thanks to Adithi, Alia, Andrea, Andrés, Anmol,
Behzad, Benno, Błażej, Genís, Guillem, Hyon, Jorge, Laura, Luis, Michael, Pablo, Pedro,
Penny, Raquel, Roser, Seva, Spencer, Tinke, Tom, Valentina, Xavier and many more!

Merci aux ami·es d’ATIAM pour les moments passés avant et pendant la thèse. Merci
à la Brigade des Tubes et Audrey en particulier, merci Julia d’avoir été ma camarade de
solfège, et merci Alexis pour notre amitié malgré la distance et les années.

Merci à Antoine, Gaël, Théo, Yan, pour notre groupe de musique qui aura accompagné
une bonne partie de cette thèse. J’inclus bien sûr Camille dans ces remerciements au
groupe, je chéris tous les moments passés avec vous, même si je ne suis jamais dispo.

Un immense merci aux ami·es de l’ENS (et affilié·es !), pour les rires, soirées et mo-
ments passés ensemble. Je veux particulièrement remercier ma famille de cœur, Spam-
mens, pour la richesse de nos relations individuelles et de groupe, et pour tout le bonheur
qu’iels m’ont apporté depuis qu’on se connait. Un merci supplémentaire à Elric, Leela
et Gaspard pour nos séances communes de rédaction qui ont grandement participé au
maintien de ma santé mentale en cette fin de thèse.

Pour finir, je veux remercier ma famille pour leur soutien tout au long de ma vie,
depuis le début de ma pratique musicale et tout au long de mes études. Merci Éléonore,
Frédéric, Papa et Maman, je ne serais pas où j’en suis aujourd’hui sans vous. Merci aussi
à Anne et Jean-François de m’avoir permis de réaliser mon stage d’observation au LAC,
je peux maintenant affirmer que ce moment m’a poussé à me diriger vers la recherche.

Enfin, merci Aura pour ta présence et ton soutien, dans mes études, mon travail, et
ma vie.

Du fond du cœur,

Merci.

Abstract

Guitarists who playWestern PopularMusic (WPM) are usually little trained inmusic the-
ory, a great part of their learning being autonomous and informal. To learn new songs or
share them to other guitarists, they will commonly resort to audio recordings and tabla-
tures. When it comes to composing new songs, it is usually conducted directly with the
guitar through jamming and experimenting, alone or in a band. This thesis aims at ex-
ploring new computational methods that could assist guitarists both in the learning and
compositional phases.

Learning assistance is motivated by the large quantity of guitar resources available
online, and aims at helping guitarists navigate them to ease informal learning. A first
algorithmic approach was proposed to make song recommendations to learners that are
conditioned by difficulty ratings of the songs and the learner’s level estimate. A second
approach proposes musical features to automatically estimate the difficulty of bass and
guitar tablatures onmultiple criteria, while guaranteeing explainability and interpretabil-
ity. Both approaches are based on new datasets that are or will be shared openly to the
research community.

Normally, tablatures of composed songs are only written in a later stage to transcribe
the songs, for memorisation and communication purposes. Other contributions of this
thesis propose ways to assist with composition, the objective being to motivate guitarists
to use tablatures during the composition process by augmenting tablature notation soft-
warewithMachine Learning (ML) functionalities. Afirstmodel permits suggestingwhere
to add bends in a tablature, in order to make it more idiomatic of WPM guitar playing.
The ML model was integrated in an online tablature notation software to illustrate how
it could fit guitarist-composers’ workflow. Other contributions focus on guitar accompa-
niment parts. A model for suggesting a guitar chord position, given the previous one,
is introduced and tested with a set of newly introduced quantitative metrics. This work
was used as a first step that led to the development of a transformer and a rule-based
model that generate possible continuations of an existing bar of rhythm guitar, in tabla-
ture format. Both models were evaluated quantitatively, but also qualitatively by external
participants through an online survey. Finally, another transformer model is proposed
for generating bass tablatures, given an existing rhythm guitar track, to assist guitarist-
composers who are not bass players.

Keywords: Guitar Tablatures,Western PopularMusic,Music InformationRetrieval, Com-
puter Music, Music Learning, Machine Learning

i

Résumé
Les guitaristes jouant desMusiquesActuellesOccidentales sont généralement peu formés
en théorie musicale, une grande partie de leur apprentissage étant autonome et informel.
Pour apprendre de nouveaux morceaux ou les partager avec d’autres guitaristes, ils ont
souvent recours à des enregistrements audio et à des tablatures. Quant à la composition
de nouveaux morceaux, celle-ci est généralement réalisée directement sur la guitare, en
jammant et expérimentant, seul ou en groupe. Cette thèse vise à explorer de nouvelles mé-
thodes algorithmiques susceptibles d’aider les guitaristes lors des phases d’apprentissage
et de composition.

L’assistance à l’apprentissage est motivée par la quantité importante de contenu gui-
taristique disponible en ligne et vise à aider les guitaristes à naviguer ce contenu afin de
faciliter l’apprentissage informel. Une première approche est proposée pour recomman-
der des morceaux aux apprenants, en prenant en compte une estimation de leur niveau
et de la difficulté des morceaux. Une deuxième approche propose des descripteurs mu-
sicaux permettant d’estimer automatiquement la difficulté de tablatures de guitare et de
basse selon plusieurs critères, tout en garantissant l’explicabilité et l’interprétabilité des
résultats. Les deux approches reposent sur de nouvelles bases de données, déjà partagées
ou en cours de partage avec la communauté scientifique.

Habituellement, une tablature d’une composition musicale n’est écrite qu’après la
phase de création musicale, afin de transcrire les morceaux à des fins de mémorisation
et de communication. D’autres contributions de cette thèse s’intéressent à l’assistance à
la composition, avec pour objectif d’inciter les guitaristes à composer à l’aide de tabla-
tures, en enrichissant les logiciels de notation par des fonctionnalités d’apprentissage au-
tomatique. Un premiermodèle permet de suggérer l’ajout de notes tirées (bends) dans une
tablature, afin de la rendre plus idiomatique. Ce modèle a été déployé dans un logiciel
de notation de tablatures en ligne afin d’illustrer son intégration possible dans le travail
des guitaristes-compositeurs. D’autres contributions se concentrent sur les parties d’ac-
compagnement à la guitare. Un modèle de suggestion de positions d’accords, basé sur
la position précédente, est proposé et évalué à l’aide de nouvelles mesures qualitatives.
Ce travail a constitué une première étape ayant conduit au développement d’un modèle
transformer ainsi que d’un modèle déterministe, permettant de générer des continuations
possibles d’une mesure de guitare rythmique, au format tablature. Ces deux modèles ont
été évalués quantitativement,mais aussi qualitativement par des participants externes via
une enquête en ligne. Enfin, un autre transformer est proposé pour générer des tablatures
de basse à partir d’une piste de guitare rythmique existante, afin d’assister les guitaristes-
compositeurs qui ne sont pas bassistes.

Mots-clés : Tablatures de Guitare, Musiques Actuelles Occidentales, InformatiqueMusi-
cale, Musique Assistée par Ordinateur, Apprentissage Musical, Apprentissage Automa-
tique

iii

Contents

List of Figures xi

List of Tables xv

Acronyms xvii

Foreword 1
Context of this Thesis . 1
Objectives and Motivation . 3
Outline of this Thesis . 4
Publications . 7

I Introduction 9

1 Musical Background 11
1.1 Guitar Tablatures . 12

1.1.1 From Lute Music to Digital Tablature Notation Software 12
1.1.2 Tablature Digital Formats . 15

1.2 Modern Guitar Practice . 17
1.2.1 On Tablature Usage . 19
1.2.2 Composing Tablatures? . 20
1.2.3 Rhythm and Lead Guitar . 22

2 Machine Learning Models used in this Thesis 25
2.1 About Artificial Intelligence . 26
2.2 Machine Learning Methods . 28

2.2.1 General Considerations . 28
2.2.2 Features in Machine Learning . 30
2.2.3 On Interpretability and Explainability 31
2.2.4 Decision Trees . 32

v

2.2.5 Naive Bayes Models . 33
2.3 Deep Learning Methods . 34

2.3.1 Neural Networks and Perceptrons 34
2.3.2 Recurrent Neural Networks . 38
2.3.3 Attention-Based Models . 41

3 State of the Art 45
3.1 Tablature Data in MIR Research . 46

3.1.1 Tablature Datasets and Representations 46
3.1.2 mySongBook . 47
3.1.3 The DadaGP Dataset . 48
3.1.4 Digital Representations of Tablatures 50
3.1.5 Tablatures in Computational Musicology 51

3.2 Assisted Guitar Composition and Tablature Generation 57
3.2.1 Music Generation in the Audio and Symbolic Domains 57
3.2.2 Tablatures in Symbolic Music Generation 59
3.2.3 Automatic Tablature Arrangement 60
3.2.4 Tablature Generation Models for Co-Creativity 61

3.3 Computer Assisted Guitar Education . 62
3.3.1 Music Difficulty Estimation . 62
3.3.2 Games and AI-Models for Learning and Teaching Guitar 64

II Assisted Guitar Pedagogy through Automated Difficulty Estimation 67

4 Difficulty Adjusted Guitar Song Suggestion 69
4.1 What makes learning new songs difficult? 70

4.1.1 Difficulty Criteria and Exercises 70
4.1.2 Songs, Parts, and Versions . 72

4.2 Difficulty-Annotated Corpus . 75
4.3 A Model for Personalised Suggestion . 76

4.3.1 Definitions . 77
4.3.2 Estimating a Learner’s Skill Level 77
4.3.3 Personalised Version Suggestions 78

4.4 Evaluation . 80
4.5 Discussions and Conclusion . 82

4.5.1 Limitations and Perspectives . 82
4.5.2 Conducting Public Research within an Industrial Collaboration . 84

5 Features for Automatic Difficulty Assessment of Tablatures 85
5.1 Objectives . 86
5.2 The Tablature Performance Difficulty Dataset 86

vi

5.2.1 Data Source and Difficulty Ratings 87
5.2.2 Data Retrieval and Preparation . 87
5.2.3 Style Analysis . 88

5.3 Features for Playing Difficulty Estimation 90
5.3.1 Instrument-agnostic Features . 90
5.3.2 Guitar-related Features . 92
5.3.3 Analysing Feature Importance . 93
5.3.4 Defining Feature Groups . 94

5.4 ML Models for Difficulty Analysis . 95
5.4.1 RubricNet . 95
5.4.2 Gaussian Naive Bayes . 98
5.4.3 Selecting a Subset of Features . 98
5.4.4 Visualisations for Usability . 99

5.5 Conclusion and Perspectives . 102

III Assisting Guitar Tablature Composition 103

6 Modelling and Predicting Guitar Techniques 105
6.1 Introduction . 106
6.2 Digital Representation of Bends . 109

6.2.1 Labelling . 109
6.2.2 Deriving a Bend-Less Score Simplification 110
6.2.3 High-level Features for Bends Suggestion 112

6.3 Bends Computational Analysis . 114
6.4 Bend Prediction Results . 116

6.4.1 Model Performance . 116
6.4.2 Feature Importance . 117

6.5 Prediction Analysis . 118
6.6 Controllable Bends Suggestion . 120
6.7 Conclusions and Perspectives . 121

7 Guitar Chord Diagram Suggestion 127
7.1 Suggesting Guitar Chord Diagrams . 128
7.2 Methodology . 130

7.2.1 Proposed Model . 130
7.2.2 Implementation Details . 131

7.3 Data . 131
7.3.1 Corpora . 132
7.3.2 Statistical Analyses . 132
7.3.3 Data Augmentation Strategy . 135

7.4 Experiments . 136

vii

7.4.1 Evaluation Metrics . 136
7.4.2 Results . 138

7.5 Discussion . 141
7.6 Conclusion . 142

8 Picking Pattern Generation for Rhythm Guitar Tablature Continuation 143
8.1 Picking Pattern Generation . 144

8.1.1 Definitions . 144
8.1.2 Texture and Conditioning Controls 145
8.1.3 Deep Learning Model . 147
8.1.4 Rule-Based Model . 148

8.2 Data Preparation . 151
8.3 Transformer Model Training and Inference Details 153
8.4 Quantitative Results . 154

8.4.1 Evaluation Metrics . 154
8.4.2 Discussion on Performance . 155

8.5 Subjective Evaluation . 157
8.5.1 User Study Details . 157
8.5.2 Questions Results . 159
8.5.3 Thematic Analysis . 162

8.6 Conclusion . 166

9 Conditional Bass Tablature Generation 167
9.1 Introduction . 168
9.2 Data Preparation . 169

9.2.1 Tokenisation and Preprocessing 170
9.2.2 Sequence Extraction and Filtering 171

9.3 Method . 172
9.4 Qualitative Analysis of the Generation . 174

9.4.1 Harmonic and Rhythmic Features 175
9.4.2 Gesture and Bass Guitar Idiomaticity 176
9.4.3 Stylistic Consistency . 176

9.5 Conclusion . 177

IV Conclusion and Perspectives 179
Summary of Contributions . 181
Perspectives . 183

Bibliography 187

Appendices

viii

A Evaluation Samples of the Rhythm Guitar User Study 207
A.1 Sample 1 . 207
A.2 Sample 2 . 208
A.3 Sample 3 . 209
A.4 Sample 4 . 210
A.5 Sample 5 . 211

B Energy Consumption Considerations 213

C Legal Considerations in Generative Music AI 217

D Guitar, AI, and Artists 221

ix

List of Figures

A Tablature notation. 2
B Picture of an electric guitar . 2
C Standard notation . 2

1.1 Modern tablature notation and the corresponding fretboard view 12
1.2 Different types of tablature notation . 13
1.3 User interfaces of music notation software . 16
1.4 Excerpts of internal file representations for the same tablature excerpt 18
1.5 Some guitar techniques and their notation . 21
1.6 Rhythm and lead guitar tablature excerpts . 22
1.7 A guitar riff . 23

2.1 Monthly average of “AI” Google queries . 26
2.2 Artificial intelligence and the sub-categories it encompasses 27
2.3 Dummy decision tree to disambiguate metal styles 33
2.4 An artificial neuron . 35
2.5 The perceptron . 36
2.6 A MultiLayer Perceptron . 37
2.7 Activation functions . 38
2.8 A simple Recurrent Neural Network . 39
2.9 A Long Short-Term Memory cell . 39
2.10 A Gated Recurrent Unit . 40
2.11 Self-Attention . 41
2.12 Attention with multiple heads . 42
2.13 Diagram of the full Transformer architecture 43

3.1 mySongBook wordcloud . 47
3.2 DadaGP wordcloud . 49
3.3 One bar of guitar tablature and its possible representations 51
3.4 Summary of the different generation types for symbolic music 59

xi

3.5 Screenshots of three websites with guitar-related resources 63
3.6 Guitar Hero and Rocksmith interfaces . 66

4.1 Chords and rhythm patterns for Knocking on Heaven’s Door 73
4.2 GSC corpus statistics . 75
4.3 Distribution of the song versions difficulty criteria 76
4.4 Distribution of the difficulty tiers evaluations 81
4.5 Mock representation of a learning path . 83

5.1 Distributions of files in each difficulty category/level 88
5.2 Counts of the styles detected in the dataset 89
5.3 Numbering of all string-fret pairs on the fretboard 92
5.4 Dendogram for the hierarchical clustering of features 95
5.5 The RubricNet architecture . 97
5.6 Evolution of the mean accuracy with larger feature sets 99
5.7 Possible visualisations for difficulty analysis 100

6.1 First two bars of G.O.A.T., as played by Tim Henson from Polyphia 106
6.2 Ratio of the use of playing techniques . 107
6.3 A bend being performed on guitar . 108
6.4 Five different bend types and their corresponding notation 108
6.5 Screenshot of the bend notation window in Guitar Pro 109
6.6 A complex bend and its corresponding label 110
6.7 Excerpt from Lynyrd Skynyrd’s Free Bird solo 110
6.8 Example of the same melody played with or without bends 111
6.9 Excerpt of Watermelon in Easter Hay, Frank Zappa 111
6.10 Illustration of the feature definitions . 113
6.11 Normalised heatmaps of notes in mySongBook 114
6.12 Distribution of four of the extracted features 115
6.13 Confusion matrices . 117
6.14 Average �1 scores of the ablation study . 118
6.15 Examples of excerpts with predictions obtained with our full tree model . . 119
6.16 Chopin’s Nocturne Op.9 No.2 arranged for guitar 120
6.17 Confusion matrix of the MLP model . 121
6.18 Bends suggested by the MLP model with different thresholds 122
6.19 Screenshot of the demonstration interface made by Léo Dupouey in alphaTab 123
6.20 Decision paths for Highway Star . 124
6.21 Decision paths for Jailbreak . 125

7.1 Two guitar chord diagrams for an A minor chord 128
7.2 Summary of the diagram suggestion task . 129
7.3 Chord diagrams presented on Ultimate Guitar vs true diagrams 129

xii

7.4 Summary of the proposed approach for chord diagram suggestion. 130
7.5 Vector reprentations for an Asus4 chord . 130
7.6 Tablature excerpts for diagram extrapolation 133
7.7 Distribution of the root notes of chords in both datasets 133
7.8 Distribution of the 15 most used chord natures in each dataset 134
7.9 Word cloud representation of chord labels in DadaGP and MSB 134
7.10 10 diagrams from DadaGP for a G major chord 135
7.11 Pitch class histograms before and after data augmentation 136
7.12 Guitar chord diagrams with possible fingerings below 138
7.13 Unplayable chords’ diagrams . 140
7.14 Easy and hard chord transitions . 140

8.1 Excerpt of a rhythm guitar tablature and summary of the task studied . . . 144
8.2 Tablature excerpts and their corresponding picking patterns 145
8.3 Overview of the picking pattern generation pipeline 146
8.4 Screenshot of the “special paste” window from Guitar Pro 148
8.5 Summary diagram of the implemented model 149
8.6 Example of a rhythm guitar tablature with uniform texture 150
8.7 Example of the tokens obtained from a single bar tablature excerpt 153
8.8 Generated picking pattern and the expected reference tablature 155
8.9 Boxplots of the participants’ answers for each question and sample 160
8.10 Cumulated answers on all 5 questions for each configuration 161
8.11 Final themes and sub-themes identified from the text answers 163

9.1 Example of bass and rhythm guitar tablatures 168
9.2 DadaGP tokenisation of one measure with three instruments 169
9.3 Example of an extraction of bass guitar tokens 171
9.4 Distribution of sequence lengths in the training dataset 172
9.5 Adapted implementation of the model from Makris et al. (2022) 172
9.6 Generated example 518 . 175
9.7 Generated example 209 . 176
9.8 Generated example 534 . 178
9.9 Generated example 719 . 178
9.10 Generated example 588 . 178

A.1 Reference tablature of the first sample . 207
A.2 Rule-based generated tablature of the first sample 208
A.3 Transformer generated tablature of the first sample 208
A.4 Reference tablature of the second sample . 208
A.5 Rule-based generated tablature of the second sample 209
A.6 Transformer generated tablature of the second sample 209
A.7 Reference tablature of the third sample . 209

xiii

A.8 Rule-based generated tablature of the third sample 210
A.9 Transformer generated tablature of the third sample 210
A.10 Reference tablature of the fourth sample . 210
A.11 Rule-based generated tablature of the fourth sample 211
A.12 Transformer generated tablature of the fourth sample 211
A.13 Reference tablature of the fifth sample . 211
A.14 Rule-based generated tablature of the fifth sample 212
A.15 Transformer generated tablature of the fifth sample 212

xiv

List of Tables

3.1 Number of tracks for each instrument in DadaGP 50
3.2 Closed-source tablature data used in research 53
3.3 Guitar tablature datasets available for research 55

4.1 Criteria for assessing song difficulty in guitar playing 72
4.2 Ratings for selected versions and parts from three songs 74
4.3 Coefficients for each criterion . 79

5.1 Grade ranking system used in the competition 87
5.2 Results of the Kruskal-Wallis tests . 90
5.3 �2 correlation measures of 15 features for each classroom 94
5.4 Groups of features based on their mutual correlation 96

6.1 A description of some of the most common guitar playing techniques 107
6.2 List of the high-level features extracted from the note events 112
6.3 Number of notes per label in our dataset . 114
6.4 Feature importance of the 8 most significant features 117

7.1 Results of the baseline and the full model on MSB and DadaGP 139
7.2 Playability-related metrics on MSB and DadaGP 139
7.3 Texture metrics for chord suggestions . 140

8.1 Tokens in our vocabulary . 152
8.2 Results obtained on our evaluation metrics 156
8.3 Number of participants per geographical regions 159
8.4 Results of the linear mixed effects model analysis 162

B.1 Number of FPOs for the models of this thesis 215

xv

Acronyms

AI Artificial Intelligence (pp. 2, 3, 5, 6, 25–27, 58, 61, 62, 64, 181, 183, 185, 217–219)
AMT Automatic Music Transcription (pp. 46, 47, 50, 54, 55, 61, 184)
ANN Artificial Neural Network (p. 34)

BCE Binary Cross-Entropy (pp. 30, 131)
BERT Bidirectional Encoder Representations from Transformers (pp. 42, 61, 122)
BPM Beats Per Minute (pp. 70, 74)

CPU Central Processing Unit (pp. 131, 154, 214)
CRediT Contributor Role Taxonomy (pp. 7, 8)

DL Deep Learning (pp. 4, 5, 27, 28, 31, 34, 37, 49, 51, 61, 64, 98, 102, 152–155, 157, 160, 213,
215)

FPO Floating-Point Operation (pp. 213–215)

GELU Gaussian Error Linear Unit (pp. 37, 38)
GNB Gaussian Naive Bayes (pp. 34, 95, 97–100, 102)
GPT Generative Pretrained Transformer (pp. 42, 63, 143)
GPU Graphical Processing Unit (pp. 153, 154, 174, 183, 214, 216)
GRU Gated Recurrent Unit (pp. 39, 40)
GSC Guitar Social Club (pp. 69, 73, 75, 80, 82, 84, 217)

LLM Large Language Model (pp. 27, 42)
LSTM Long Short-Term Memory (pp. xi, 39, 40, 61)

MEI Music Encoding Initiative (p. 17)
MIR Music Information Retrieval (pp. 1, 4, 5, 12, 25, 30, 45–47, 49, 50, 62, 102, 213, 219)
ML Machine Learning (pp. 1, 3–6, 25, 27–35, 50, 80, 85, 95, 109, 110, 112, 181)

xvii

xviii Acronyms

MLP MultiLayer Perceptron (pp. xi, 34–38, 41, 42, 105, 120, 123, 130, 141)
MSB mySongBook (pp. 47–49, 113, 114, 132)
MSE Mean Squared Error (pp. 30, 97)
MTG Music Technology Group (pp. 85, 86)

NLP Natural Language Processing (pp. 2, 40, 42, 61, 215)
NN Neural Network (pp. 4, 27, 34, 37, 215)
NPM Notes Per Minute (pp. 70, 71, 81)

ReLU Rectified Linear Unit (pp. 37, 38)
RNN Recurrent Neural Network (pp. 38–41, 49, 50, 122)

TDP Thermal Design Power (p. 214)
TPD Tablature Performance Difficulty (pp. 86, 87)

WPM Western Popular Music (pp. 1, 3–5, 15, 17–20, 22, 46–49, 51, 52, 55, 57, 60, 64, 69, 75,
92, 106, 107, 109, 113, 128, 130, 132, 142, 145–147, 157, 167, 176, 181, 184, 222)

Foreword

Context of this Thesis

The research presented in this thesis ismotivated by the goal of elaborating computational
tools to assist guitar practice and composition. In the Western Popular Music (WPM)
repertoire, guitarists commonly learn music autonomously, with a limited use of music
theory training (L. Green 2002). In that context, tablature notation (Figure A) is favoured
by guitarists for its visual relationship with the guitar fretboard (Figure B) that facilitates
its interpretation. In a tablature, each horizontal line represents a string, and numbers
denote the position on the fretboard, delimited by frets, that should be pressed to play the
desired notes. Tablature notation is prescriptive and represent gestures, which facilitates
its use by guitarists who do not know how to read standard notation nor where each note
can be played on the fretboard. While tablature also includes rhythm notation (Figure A),
guitarists can play without knowing how to read rhythm, as they will learn most songs
by listening to their original recordings (L. Green 2002). Tablatures are complementary
to recordings and allow guitarists to know precisely how a song is played. They are used
for learning, memorisation and communication purposes. Because tablature is the main
type of notation used by guitarists in WPM, and because it conveys more performance
information than standard notation (Figure C), tablature is the main notation type used
throughout this thesis. In this work, tablatures and guitar songs are studied through
statistical analyses and Machine Learning (ML) methods for providing musicians with
automatic creative suggestions and assist their practice.

This thesis belongs to the broad field of Music Information Retrieval (MIR) (Burgoyne
et al. 2015; Downie 2003), an interdisciplinary field that makes use of computer science
for the analysis of musical data and the automation of music-related tasks, like chord
recognition or music style transfer for instance. Within the MIR field, this thesis focuses
on symbolic music data (Le et al. 2024), i.e. music represented as a sequence of sym-
bols like a score or a tablature, as opposed to audio data. Using symbolic data to study
music has two main advantages. First, music scores are high-level representations that
directly reflect the musical content of a piece, compared to audio files that needs to be

1

Foreword

Figure A: Tablature notation.

Figure B: Picture of an electric guitar, by obBilder. The guitar is turned so that the strings
are in the same order as the tablature above.

Figure C: Standard Notation.

processed to identify what notes are played and when. Symbolic music is also one of the
main means of communication between musicians. By studying and possibly generating
symbolic music, we benefit from a representation that is intelligible and usable by musi-
cians directly. Second, studying symbolic music also has the advantage of enabling the
use of techniques from the sub-fields of Natural Language Processing (NLP) that study
text, thanks to parallels that can be drawn between symbolicmusic andwritten languages
(Le et al. 2024). For instance, the revolutionary transformer network from NLP also has
greatly improved symbolic music processing and generation (Y.-S. Huang et al. 2020; Z.
Wang et al. 2021).

This thesis builds upon previous work conducted within the Algomus team. Cournut
et al. (2020) introduced a parser for Guitar Pro files, the current prevalent digital format
for tablatures. This parser is used throughout this thesis as it permits further studies like
Cournut et al. (2021) that identifiedwhich guitar chord positions are used themost. It was
also used in Régnier et al. (2021) that introduced an Artificial Intelligence (AI) method to
identify whether a guitar part is accompaniment or not. This work will be particularly
useful to this thesis as it allows to identify data subsets when developing new AI models
that focus on melodies or accompaniment.

2

https://pixabay.com/photos/electric-guitar-skirt-guitar-1669233/

Objectives and Motivation

Objectives and Motivation

This thesis’ contributions serve two main objectives: assisting guitar learning, and easing
the composition process within tablature notation software.

Websites like Songsterr or Ultimate Guitar offer guitar players access to millions of
songs’ tablatures and chord progression aligned with lyrics. Helping learners navigate
those resources calls for recommendation systems but, unlike traditional song recom-
mendation based on personal taste or similar users (Born et al. 2021; Zeng et al. 2024),
recommendations to guitar students should factor learning difficulty. Some systems like
Barthet et al. (2011) are explicitly designed for learning, but do not take the difficulty of
the songs or the level of the learner into account when making suggestions. An objective
of this thesis is to propose a way to recommend guitar learners with new songs that are
of an appropriate difficulty, given their current mastery of the instrument. Such a sys-
tem requires songs’ difficulty to be rated, which can be done through manual ratings or
ML methods. However, while such ML methods exist for piano music, difficulty analy-
sis of guitar songs was only conducted on chord progressions of accompaniment tracks
(Vélez Vásquez et al. 2023). To address this limitation, another objective of this thesis is
to propose an automatic model for estimating the difficulty of a guitar tablature, in an
explainable and interpretable fashion.

The second main objective of this thesis is to research ways to make tablatures a part
of the composition process for WPM guitarists, rather than only a means of transcription.
Contributions related to that objective are at the heart of the ANR TABASCO project,
within which this thesis played a significant role. Preliminary interviews conducted by
Baptiste Bacot (musicologist involved in the project) with guitarist-composers showed
that tablature notation software can be used for composition but that additional algorith-
mic features could make the process richer and easier for a number of guitarists. Some
of the features of interest expressed by the interviewees relate to ideation and analysis.
For instance, some composers are interested in automatic tools that would identify scales
they can experiment with, ormodels that suggest drum and bass tracks (Bacot et al. 2024).
Observation of how the notation software is used by composers also highlighted some be-
haviours that could be automated by the notation software, like the heavy use of the copy-
pasting feature when writing accompaniment parts. This thesis presents AI models that
could assist composers when writing tablatures, some focusing on lead guitar (melodic
tracks) and others on rhythm guitar (accompaniment tracks). As will be discussed fur-
ther in chapter 3, while guitar tablatures have already been studied in research, most AI
methods focus on the generation of tablatures that might be performed directly by gui-
tarists. Conversely, this thesis explicitly aims at assisting guitarists in specific tasks of the
composition process, using tablatures as a common means of communication.

3

Foreword

Outline of this Thesis

This thesis is organised in fourmain parts: an introductory one (part I), two for the contri-
butions on guitar learning (part II) and tablature composition (part III), and a concluding
one (part IV).

The introduction (part I) begins with a presentation of the musical background re-
quired for a full understanding of this thesis. Chapter 1 presents tablature notation from
a historical perspective and how tablatures can now be encoded digitally. The rest of
the chapter discusses how WPM guitar players practise their instrument and what role
tablature plays, especially during the composition phase.

Chapter 2 provides explanations of the ML methods used throughout this thesis like
decision trees orNaive Bayesmodels. Special attention is given toNeuralNetworks (NNs)
andDeep Learning (DL)methods, as multiple architectures are used in the contributions,
from simple perceptrons to large transformers.

Finally, chapter 3 presents existing work related to this thesis’ contributions. A signif-
icant contribution of this chapter is a review of which data has been used in the literature
on guitar and tablatures, and which WPM guitar datasets are now publicly available for
research. We also present guitar-related MIR tasks, with a focus on symbolic methods
that use tablatures.

The first part of the contributions (part II) focuses on methods to assist guitar learners
in their practice. Chapter 4, presents a song recommendation system that takes the learn-
ers’ level into account. This work is part of an industrial collaboration and benefits from
a proprietary dataset of WPM guitar accompaniment songs rated across several difficulty
criteria. Previous research already studied ways to assist guitar players in their learning
(Ariga et al. 2017b; B. Wang et al. 2021), but none explicitly measures the level of the gui-
tarists to make informed suggestions. This chapter proposes a way to model the level of a
guitar player on multiple musical dimensions, and use that level estimate to recommend
songs of an appropriate difficulty to keep the learners engaged. While the full corpus is
proprietary, a subset of the data is released, as well as all the code of this recommendation
system.

Chapter 5, presents a new approach to automatically analyse the difficulty of tabla-
tures. While existing work studies the playability of tablatures (Ariga et al. 2017a), the
presented criteria only include playing speed and finger stretching of chords, which can
definitely correlate with difficulty but alsomiss othermusical dimensions. Vélez Vásquez
et al. (2023) include other difficulty criteria defined from discussions with guitar teachers
but only study chord progressions of WPM guitar accompaniment tracks. This chapter
aims at bridging the gap in the current literature by defining and testing various musical
features for automatically analysing the difficulty of tablatures. This work is based on a
newly-gathered dataset of bass and guitar tablatures given a global rating of difficulty by
amateur WPM guitar players.

4

Outline of this Thesis

The second part of the contributions (part III) presents new AI models destined to as-
sist guitarist-composers in writing tablatures, models that could ultimately be included
in tablature notation software. Chapter 6 presents a new task and a corresponding model
for rendering tablatures more idiomatic by suggesting where to add playing techniques.
Playing techniques are an important part of guitar playing in WPM and include various
articulations like glissandi (slides) or legato (hammer-on/pull-off), for instance. Techniques
can be notated precisely in tablatures and can thus be studied automatically from tabla-
ture datasets. This chapter focuses on bends, a characteristic technique ofWPMguitar that
allows to change the pitch of a note continuously, never studied in MIR previously. We
propose a detailed taxonomy to represent the variety of bend types, study their usage in
a large corpus of WPM guitar tablatures, and design a model that automatically suggests
where bends could be added in a tablature. This task of playing techniques suggestion
is thought to help guitar players who might base their work on tablatures automatically
arranged from other instruments (Edwards et al. 2024), as such tablatures might lack ex-
pressiveness and idiomaticity ofWPMguitar playing. Suggesting playing techniques can
also be away for composers to vary themelodies they compose and explore playing styles
they might not practise usually.

Chapter 7 focuses on rhythm guitar (accompaniment guitar tracks) and studies gui-
tar chord positions. Since strings on a guitar are tuned in perfect fourth intervals (except
for a major third between the G and B strings), the same note can be played in multi-
ple locations on the fretboard, and chords can likewise be played in multiple positions.
Guitar chords positions have already been studied in the literature, to analyse their sta-
tistical usage (Cournut et al. 2021) or provide users with all possible positions for a chord
(Wortman et al. 2021). However, previous work on guitar consider chords as individual
units and does not take the context they are used in into account. This chapter introduces
a new approach to guitar chord position suggestion by taking the previous chord posi-
tion into account to guarantee some continuity of musical characteristics. The objective
of this chord position suggestion task is to help guitar players navigate the range of po-
sitions they can use and motivate the use of new and varied positions. Several musical
dimensions are defined to capture a range of timbral and playability characteristics from
symbolic data and used to measure the validity of the ML approach presented.

Chapter 8 extends rhythm guitar writing assistance by studying the generation of tab-
lature excerpts that could be continuations of an existing measure. This study adapts ex-
isting work on tablature generation (Y.-H. Chen et al. 2020; McVicar et al. 2015; Sarmento
et al. 2021) by focusing on rhythm guitar and continuations of a prompt rather than free
generation. Tomake the approachmodular and enhance control possibilities, we propose
generating “picking patterns” that encode information of the picking hand. Those pat-
terns can then be combined with chord positions to obtain guitar tablatures. To evaluate
the performance of the models designed, we conduct a subjective evaluation through an
online questionnaire and gather feedback that supports the idea that an approach that
imitates copy-pasting might be favoured from more creative DL models.

5

Foreword

Finally, Chapter 9 proposes to tackle a task expressed by several composers during
interviews (Bacot et al. 2024): generating accompanying bass tablatures. While generat-
ing bass tablature was also studied in the literature (Sarmento et al. 2023a), no research
proposed to condition that generation on existing tracks, except in the audio domain
(Grachten et al. 2020; Nistal et al. 2024). This chapter presents a transformer model that
successfully generates bass tablatures that follows an existing rhythm guitar track, and a
qualitative analysis of the results is also proposed.

To conclude, Part IV ends this thesis with the perspectives envisioned, ranging from
improvements on the contributions presented to newmultimodal research. In the appen-
dices, we present additional reflections upon the AI methods presented in the contribu-
tions and the impact theymight have onmusicians, the legality of using copyrighted data
for training AI models, and the energy cost of conducting a thesis that uses ML methods.
These discussions are presented as appendices because they can be read independently,
but they are nonetheless an integral part of this thesis.

6

Publications

Publications

You will find below a list of publications resulting from this thesis work. Note that Guil-
luy et al. (2025) is not presented in this thesis, because the topic studied is too far from
the other contributions. Because I have not been equally involved in all publications, I de-
tail my contributions with the Contributor Role Taxonomy (CRediT).1 I also presentedmy
work to fellow researchers at DMRN in 2023,2 at the ICCAREday on Partition et Numérique
in 20253 and the 23rd IASPM International Conference in 2025.4 All publications are avail-
able on HAL.5

(D’Hooge et al. 2023a)AlexandreD’Hooge, Louis Bigo, KenDéguernel. “Modeling Bends
in Popular Music Guitar Tablatures”, Proceedings of the 24th International Society for Music
Information Retrieval Conference (ISMIR), 2023.
— CRediT: Conceptualisation, Data curation, Formal analysis, Investigation, Methodology, Soft-
ware, Validation, Visualisation, Writing.

(D’Hooge et al. 2024a) Alexandre D’Hooge, Louis Bigo, Ken Déguernel, Nicolas Martin.
“Guitar Chord Diagram Suggestion for Western Popular Music”, Proceedings of the 21st
Sound and Music Computing Conference (SMC), 2024.
— CRediT: Conceptualisation, Data curation, Formal analysis, Investigation, Methodology, Soft-
ware, Validation, Visualisation, Writing.

(Bontempi et al. 2024) Pierluigi Bontempi, Daniele Manerba, Alexandre D’Hooge, Sergio
Canazza. “FromMIDI to Rich Tablatures: anAutomatic Generative System incorporating
Lead Guitarists’ Fingering and Stylistic choices”, Proceedings of the 21st Sound and Music
Computing Conference (SMC), 2024.
— CRediT: Data curation, Formal analysis, Software, Visualisation, Writing.

(Ramoneda et al. 2024b) PedroRamoneda, VsevolodEremenko, AlexandreD’Hooge, Emilia
Parada-Cabaleiro, Xavier Serra. “Towards Explainable and Interpretable Musical Diffi-
culty Extimation: a Parameter-efficient Approach”, Proceedings of the 25th International So-
ciety for Music Information Retrieval Conference (ISMIR), 2024.
— CRediT: Formal analysis, Software, Validation, Visualisation, Writing.

1https://credit.niso.org/, accessed in June 2025.
2https://www.qmul.ac.uk/dmrn/dmrn18/, accessed in June 2025.
3https://cmbv.fr/fr/evenements/iccare-partition-et-numerique, accessed in June 2025.
4https://iaspm-paris2025.sciencesconf.org/?forward-action=index&forward-controller=index&lang=en, ac-

cessed in June 2025.
5https://hal.science/search/index/?q=*&authIdPerson_i=1265306, accessed in June 2025

7

https://credit.niso.org/
https://www.qmul.ac.uk/dmrn/dmrn18/
https://cmbv.fr/fr/evenements/iccare-partition-et-numerique
https://iaspm-paris2025.sciencesconf.org/?forward-action=index&forward-controller=index&lang=en
https://hal.science/search/index/?q=*&authIdPerson_i=1265306

Foreword

(D’Hooge et al. 2024b)AlexandreD’Hooge,MathieuGiraud, YohannAbbou, GillesGuille-
main. “Suggestions Pédagogiques Personnalisées pour la Guitare”,Actes des Journées d’In-
formatique Musicale (JIM), 2024.
— CRediT: Conceptualisation, Data curation, Formal analysis, Investigation, Methodology, Soft-
ware, Validation, Visualisation, Writing.

(Guilluy et al. 2025)QuentinGuilluy, Anis Farji, Joao Fernandes,MathieuGiraud, Alexan-
dre D’Hooge, Emmanuel Leguy. “Vers une taxonomie et une analyse des gestes guitaris-
tiques dans le Brutal Death Metal”, Actes des Journées d’Informatique Musicale (JIM), 2025.
— CRediT: Methodology, Supervision, Validation, Writing (Review and Editing).

(Hassein-Bey et al. 2025) ZakariaHassein-Bey, YohannAbbou, AlexandreD’Hooge,Math-
ieuGiraud, GillesGuillemain, Aurélien Jeanneau. “What songnow? PersonalizedRhythm
Guitar Learning in Western Popular Music”, Proceedings of the 26th International Society for
Music Information Retrieval Conference (ISMIR), 2025.
— CRediT: Conceptualisation, Data curation, Formal analysis, Investigation, Methodology, Soft-
ware, Validation, Writing.

(Anoufa et al. 2025) Olivier Anoufa, Alexandre D’Hooge, Ken Déguernel. “Conditional
Generation of Bass Guitar Tablature for Guitar Accompaniment in Western Popular Mu-
sic”, Proceedings of the AI Music Creativity Conference (AIMC), 2025.
— CRediT: Conceptualisation, Formal analysis, Methodology, Software, Supervision, Validation,
Visualisation, Writing.

8

Part I

Introduction

9

1

Musical Background

“Most musicologists are scared of tablature.”

Griffiths (2021)

Contents
1.1 Guitar Tablatures . 12

1.1.1 From Lute Music to Digital Tablature Notation Software 12
1.1.2 Tablature Digital Formats . 15

1.2 Modern Guitar Practice . 17
1.2.1 On Tablature Usage . 19
1.2.2 Composing Tablatures? . 20
1.2.3 Rhythm and Lead Guitar . 22

Tablature notation can be looked down upon in somemusical contexts (Balman 2020).
It is however themainmeans of communication for guitarists and bassists who playWest-
ern Popular Music and, consequently, the core music notation type used in this thesis.
This chapter aims at introducing the musical concepts required to understand the contri-
butions that are presented later on. Overall, this thesis does not involve complex music
theory concepts, even though basic knowledge of chords and rhythm can be necessary.
However, guitar practice in Western Popular Music and the usage of tablatures are dis-
cussed extensively.

11

Chapter 1. Musical Background

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 1.1: Modern tablature notation and the corresponding fretboard view (in Guitar
Pro). The horizontal lines of the tablature are the strings of the guitar, the number denote
the frets (horizontal dimension on the fretboard shown).

1.1 Guitar Tablatures

Griffiths, in his talk at the Annual Conference of the Musicological Society of Australia in
2021 (Griffiths 2021),1 makes a case for tablature notation that he deems not considered
enough in musicological research. When claiming that musicologists are scared of tabla-
ture, he defends that the lack of research on tablatures might be due to their absence in
most music curriculums and a slow but steady historical bias that drove tablature out of
the scope of interest. This observation could also be made regarding MIR research: for
the 2000-2020 period, the ISMIR paper explorer only returns 6 papers mentioning tabla-
ture in their title, among which 3 study guitar tablatures (instead of lute).2 The situation
slightly changed in the recent years as will be discussed later, for now, this section pro-
vides a broad introduction on tablatures, starting with a brief historical overview before
diving deeper into how tablatures are currently used in popular music.

1.1.1 From Lute Music to Digital Tablature Notation Software

The tablature is a form of notation that arose inWestern music at least in the 14th century
(Dart et al. 2001). It was used for keyboard and lute music alike (among other instru-
ments) and has several differences from staff notation. In keyboard tablatures, each note
iswritten using a unique letter, sometimes in addition to a staff (Apel 1942). Tablatures for
stringed instruments usually feature horizontal lines that represent the strings/courses
of the instrument and individual notes are denoted using letters3 (French tablatures) or
numbers (Italian or Spanish tablatures). In both cases, the character indicates on which
fret a finger should be pressed to obtain the desired pitch, going incrementally from the
open string (0 or a) to higher frets (Figure 1.1).

1My thanks to Quentin Guilluy for introducing me to Griffiths’ work.
2https://ismir-explorer.ai.ovgu.de/app/?#tab, accessed in June 2025.
3Those letters are unrelated to English note names and are simply used to count frets, with a representing

the 0th fret (open string), b the 1st fret, etc.

12

https://ismir-explorer.ai.ovgu.de/app/?#tab

1.1. Guitar Tablatures

(a) Standard/Staff Notation

(b) Italian Lute Tablature

(c) French Lute Tablature

e|-1-----1--0--1--3--|-5--5--|
B|----1--------------|-------|
G|-------------------|-5--5--|
D|-3-----3-----------|-3--3--|
A|-------------------|-------|
E|-------------------|-------|

(d) ASCII Tablature

(e) Modern Tablature Notation

Figure 1.2: Different types of music notation of the same musical excerpt (with minor
adaptations of the rhythm notation). The first three are reproduced from Dalitz et al.
(2013).

13

Chapter 1. Musical Background

Most tablatures would also include some kind of rhythm notation above the staff, usu-
ally using symbols similar to their mensural notation counterparts (Figure 1.2).

Why were tablatures used? For the keyboard, they were a way to indicate the bass
notes efficiently, below the melody written in standard notation (Apel 1942, p. 23). Poly-
phonic music could also be entirely written with tablatures, as it allowed for a compact
and easily printable representation (Apel 1942, p. 32). For the lute, the tablature is more
detailed and serve a different purpose. As put in Apel 1942, p. 55:

“If we conceive notation as a link connecting the writer of a composition with
its performer, i.e., as an expedient showing the player or singer the tones
which the composer wants him to produce, then we must realize that, gen-
erally speaking, there is a direct and an indirect way to achieve this goal. In
a notation representing the latter method, the player is referred to his instru-
ment through the medium of numerous elements of a distinctly intellectual
character, such as pitch, intervals, tonality, accidentals, scales and many other
such points. In a notation representing the direct method, however, his fin-
gers are referred immediately to the technical devices of his instrument, the
keys, frets, strings, holes, etc. In German terminology, these two species are
distinguished as Tonschrift and Griffschrift, terms which may be conveniently
translated ‘pitch notation’ and ‘finger notation.’

”Tablature undoubtedly belong to the category of finger notation and, because it en-
ables a direct mapping between the transcription and the instrument, it is accessible to
players with little musical theory knowledge. This notation that favours performance
might explain the popularity of the lute (Apel 1942; Griffiths 2021, pp. 55, 4), and maybe
even the current popularity of guitar where tablature notation is appreciated for similar
reasons (L. Green 2002).

Back to the lute, tablature use decreased rapidly in the 18th century when staff nota-
tion became more widespread and tablatures started being seen as less “serious” (Grif-
fiths 2021), while instruments that used tablatures became less played outside of popular
music or switched to staff notation. Tablature notation could have died out, if it was not
for its renewed popularity in the 20th century for transcribing electric bass and guitar
parts in Western popular music (Navarret 2013, 40, Figure 1.2e). Tablatures – with some
additional information – evenwent back to being considered a “serious” notation system,
with the inclusion of electric guitars in Contemporary Classical Music (Laliberté 2010).

This thesis focuses onmodern guitar tablatures, like the ones presented Figure 1.1 and
Figure 1.2e, especially in its digital formats. Like lute tablatures, modern guitar tablatures
use horizontal lines to represent the strings, and fret positions are written with numbers.

14

1.1. Guitar Tablatures

They are also used for detailed gesture annotation, like expressive playing techniques
that are a strong aspect of guitar playing in popular music. Tablature songbooks are
fairly popular since the late 20th century, and tablatures can also be found in specialised
magazines (Navarret 2013, pp. 40–41). While these commercial options exist, open access
to free tablatures developed with the Internet. Pictures of tablatures could be shared,
but they were soon replaced with dedicated digital formats and software, as presented
hereafter.

1.1.2 Tablature Digital Formats

One type of tablature that is particularly suitable for online sharing is ASCII tablature, i.e.
tablatures that only use simple digital characters and symbols (Figure 1.2d). This con-
strains the quantity of information that can be represented, for instance rhythm details
are always omitted even if they can be implied by the number of hyphens used between
notes. Those limitations do not impact the popularity of the format, with websites like
www.ultimate-guitar.com and 911tabs.com gathering millions of ASCII tablatures (Barthet
et al. 2011). The main advantage of using ASCII characters to write tablatures is that
they can be written with any writing software. Nonetheless, digital tools dedicated to
writing tablatures soon came about, to attain cleaner scores comparable to the profes-
sionnaly engraved ones found in songbooks. MuseScore4 (Figure 1.3b), an open-source
notation software, added tablature support in its version 2.0.0, in March 2015. TuxGui-
tar5 (Figure 1.3a) is another open-source software that is focused almost exclusively on
tablature engraving. The two previous tools are often presented as free and open-source
alternatives to another software which can be considered as the leader of digital tabla-
ture engraving, at least for WPM: Guitar Pro (Figure 1.3c). Guitar Pro is a proprietary
software developed by the company Arobas Music,6 funded in 1997 and based in Lille,
France. While it is hard to be certain that it is the most used software for tablature edi-
tion, it was downloaded over 15 million times since its creation (Arobas-Music 2025) and
the .gp file format is the standard format on the biggest tablature sharing websites that
are Ultimate Guitar and Songsterr.

We discussed previously how the use of tablatures quickly evolved to adapt to the
Internet era. This evolution was also witnessed for other types of sheet music, with huge
classical music editors/publishers like Hal Leonard or Theodore Presser now also offer-
ing most of their catalogue in digital format (Kim 2025; Narici 2025). The generalisation
of digital formats called for standardised encodings that would allow sharing, parsing
and using digital music more easily. For tablatures, ASCII tabs might be considered as
the first tab encoding. However, while it partly standardised how to write and share tab-
latures, it is hard to parse automatically (though not impossible, Barthet et al. 2011).

4https://musescore.org/en, accessed in June 2025.
5https://github.com/helge17/tuxguitar/, accessed in June 2025.
6https://www.guitar-pro.com/fr/c/11-arobas-music, accessed in June 2025.

15

www.ultimate-guitar.com
911tabs.com
https://musescore.org/en
https://github.com/helge17/tuxguitar/
https://www.guitar-pro.com/fr/c/11-arobas-music

Chapter 1. Musical Background

(a) TuxGuitar

(b) Musescore

(c) Guitar Pro

Figure 1.3: User interfaces of three music notation programs with tablature support.

16

1.2. Modern Guitar Practice

It also has the disadvantage to bind musical content and visualisation together, i.e. it
is not possible to alter the design of the tablature independently of the musical content
written. More extensive standards came about in the early 2000s, like MusicXML, first
released in 2005 and managed by a private company (Recordare LLC) until 2015 when
it was transferred authority to the W3C. MusicXML included tablatures from the start
and now supports them in an extensive way.7 Another well-known standard is the Mu-
sic Encoding Initiative (MEI), which released its first version in 2010. It included basic
guitar notation features, and improved with time to manage more complex and detailed
tablatures.8 However, like MusicXML, the adoption of the MEI standard is rather slow
when it comes to tablature. It is yet to be supported by Guitar Pro, for instance. Since the
Arobas Music company started Guitar Pro in 1997, they came up with their own notation
standard for tablatures. The Guitar Pro format evolved through the years and software
versions (.gp3, .gp4, .gp5, .gpx, .gp), with a particularly big difference after the 5th
version, that limits its support in other notation software. The latest format is still hu-
man andmachine-readable and has a detailed support of most possible guitar ornaments
and techniques. Those formats are illustrated along with a simple tablature example Fig-
ure 1.4.

In this thesis, to benefit from the exhaustiveness of the format and to limit conversion
issues, we use Guitar Pro files that are later parsed in Python either with the music21

library (Cuthbert et al. 2010) – thanks to the work of Cournut et al. (2020) – or the pygui-

tarpro library.9

1.2 Modern Guitar Practice

In this thesis, we focus on Western Popular Music (abbreviated as WPM from now on). It
is an abstract concept, so we will define it through a brief summary of Middleton et al.
(2001). Note that, because of this summarising, not all criteria presented hereafter will
apply to all kinds of popular music. We also insist on using the Western adjective for it,
acknowledging the fact that this music derives from Western music tradition and that
popular music can be different depending on the tradition it stems from.
Popular music has wide appeal and it developed strongly through the advent of new
technologies in music. WPM can be viewed as a genre on its own, since it is assumed
that most popular songs would have common characteristics like their audience, their
duration, etc. However, WPM can still be divided into multiple genres and subgenres
like “background” or “dance” music. Those genre categories are usually not set in stone
and depend on context, a more objective common ground for WPM is form. For example,
most lyrics-based popular music would contain verses separated by a repeating chorus.

7https://www.w3.org/2021/06/musicxml40/tutorial/tablature/, accessed in June 2025.
8https://music-encoding.org/guidelines/v5/content/tablature.html, accessed in June 2025.
9https://pyguitarpro.readthedocs.io/en/stable/, accessed in June 2025.

17

https://www.w3.org/2021/06/musicxml40/tutorial/tablature/
https://music-encoding.org/guidelines/v5/content/tablature.html
https://pyguitarpro.readthedocs.io/en/stable/

Chapter 1. Musical Background

 <note>

 <pitch>

 <step>D</step>

 <octave>3</octave>

 </pitch>

 <duration>1</duration>

 <voice>5</voice>

 <type>quarter</type>

 <stem>up</stem>

 <staff>2</staff>

 <notations>

 <technical>

 <string>5</string>

 <fret>5</fret>

 </technical>

 </notations>

 </note>

 <note>

 <pitch>

 <step>A</step>

 <octave>3</octave>

 </pitch>

 <duration>1</duration>

 <voice>5</voice>

 <type>quarter</type>

 <stem>up</stem>

 <staff>2</staff>

 <notations>

 <technical>

 <string>4</string>

 <fret>7</fret>

 </technical>

 </notations>

 </note>

 <staff n="2">

 <layer n="5">

 <tabGrp dur.ppq="1" dur="4">

 <tabDurSym />

 <note tab.fret="5" tab.course="5" />

 </tabGrp>

 <tabGrp dur.ppq="1" dur="4">

 <tabDurSym />

 <note tab.fret="7" tab.course="4" />

 </tabGrp>

 <tabGrp dur.ppq="1" dur="4">

 <tabDurSym />

 <note tab.fret="7" tab.course="3" />

 </tabGrp>

 <tabGrp dur.ppq="1" dur="4">

 <tabDurSym />

 <note tab.fret="10" tab.course="2" />

 </tabGrp>

 </layer>

 </staff>

<Notes>

<Note id="0">

<InstrumentArticulation>0</InstrumentArticulation>

<Properties>

<Property name="ConcertPitch">

<Pitch><Step>D</Step><Accidental></Accidental><Octave>4</Octave></Pitch></Property><Property name="Fret">

<Fret>5</Fret>

</Property>

<Property name="Midi">

<Number>50</Number>

</Property>

<Property name="String">

<String>1</String>

</Property>

<Property name="TransposedPitch">

<Pitch><Step>D</Step><Accidental></Accidental><Octave>5</Octave></Pitch></Property></Properties>

</Note>

b) MusicXML

a) .gp

c) MEI

Figure 1.4: Excerpts of internal file representations for the same tablature excerpt. Note
that only the first note is represented for the .gp file format (a), and only the first two
notes for MusicXML (b).

Likewise, instruments would often play repetitive structures over any multiple of 4 bars
(Bimbot et al. 2016) on common harmonic sequences. Finally, WPM can be defined by
the variety of styles it encompasses, most if not all of them deriving from blues and early
jazz music. To cite a few: Rock, Funk, Metal, Hip-Hop, Electronic Dance Music…In this
thesis, all styles are not represented equally since we focus on guitar tablatures, so songs
without a guitar are not studied. Besides, tablature notation is not used consistently across
WPMsub-styles. For instance, rock andmetalmusic are overrepresented because they are
mostly notated and shared through tablature notation, unlike jazz music that uses it to a
much lesser extent compared to chord progressions and standard notation for melodies.
Likewise, styles of WPM that do not often feature guitars in their songs are not studied
as much in this thesis, like most kinds of rap or electronic music.

Nonetheless,WPM ismore than amusical category, as it also impliesways of listening,
learning, practising and creating music (L. Green 2002). We discuss its characteristics
more precisely when it comes to guitar music in the following sections.

18

1.2. Modern Guitar Practice

1.2.1 On Tablature Usage

Tablature notation focuses on gesture (Apel 1942). The first gesture that it encompasses
is simply to specify which string-fret pair is required to play a desired note. This dis-
ambiguation is needed because the same note can be played at several positions on the
guitar. For instance, with a guitar in standard tuning – (E2, A2, D3, G3, B3, E4), also called
E-standard tuning – the A3 can be played on: i) the 5th string, 12th fret; ii) the 4th string,
7th fret; iii) the 3rd string, 2nd fret .10 On electric guitar, because it is easy to play over the
12th fret, we could even include iv) 6th string, 17th fret.

However, as G. Merchi beautifully put it:

“If one objects that [the tablature] is required to denote positions, I would
answer that the violin and the cello etc. do not have tablatures and that the
guitar needs it even less because it has frets.11

”We will not answer this claim on the historical grounds of lute tablature since it was al-
ready done in the literature (Dart et al. 2001; Griffiths 2021), wewill however try to answer
as if that comment was made today regarding modern-days guitar tablatures. A partial
answer was already given by showing that a single note can be played on multiple posi-
tions of a guitar’s fretboard. In that case, standard notation would not provide enough
information to play the song exactly as intended. This is especially problematic in rock
and metal sub-styles where authenticity is a core value (McKinna 2014; Somdahl-Sands
et al. 2015).

The lack of gesture information in standard notation has twomain implications: firstly,
reading expected positions from a tablature should guarantee a certain level of playabil-
ity, whereas deriving positions from staff notationmight lead beginner guitarists to play a
song in a sub-optimal way; secondly, onwhat string and fret a note is played on guitar has
a noticeable impact on timbre. The most striking example is how an open string (playing
a string without pressing any fret) has very different sound qualities – longer resonance
and more high harmonic content – from the same note played on a thicker string. Both
typical use-cases mentioned here are mostly aimed at beginner guitar players, it is true
that most guitar players should eventually learn to derive the correct way to play a song
from staff notation, in particular if they are helped by a teacher. But, as it so happens,
the practice of guitar in WPM is precisely based on autonomous learning (Navarret 2013,
pp. 55–56), even though popular music is increasingly being considered inmusic schools’

10In guitar lingo, the 1st string is the thinnest and highest sounding, i.e. the E4, and the 6th is the thick-
est/lowest in pitch: the E2. It might also beworth reminding that each fret allows to play one semitone higher
than the previous one.

11Quote taken from Merchi (1700–1799), translated from French. More context and the original French
text can be found in Bosseur (2005) or Navarret (2013, p. 40).

19

Chapter 1. Musical Background

curriculums (L. Green 2002, p. 127). More precisely, learning guitar for popularmusicians
is heavily based on aurality, i.e. listening and then copying songs (L. Green 2002, pp. 60–
61). Based on this observation, one can also understand why tablatures do not need to
be precise when it comes to rhythm information (like ASCII tabs), since songs and their
rhythm are learned by listening to the original recordings. The situation evolved slightly
because tablature notation software now usually feature a playback function that is con-
sidered very important by guitarists (Bacot et al. 2024). With such a feature, it is necessary
for the rhythm to be transcribed precisely, so that the digital tablature can replace actual
recordings when practising. Nonetheless, modern tablature notation allows much more
than simply specifying where to play notes on the fretboard. It allows extensive writing
of playing techniques, an example of all those techniques and how they are engraved is
shown Figure 1.5. This notation is not entirely standardised and slight variations can still
be observed even if they are all somewhat similar (Gelling 2003; Laliberté 2010). The im-
portance of guitar techniques can also be seen from the fact that 14 pages from the Guitar
Pro User Guide are dedicated to them (Guitar Pro8 User Guide 2025, pp. 113–127) or that
the website Ultimate-Guitar have a dedicated section in its ASCII Tablature guide (Ulti-
mate Guitar Tablature Guide 2025). One could also have a look to musicological research
like (Gomez 2016, pp. 17–50) or (Norton 2008, pp. 23–33) as well as guitar educational
books (Gelling 2003) to observe how important those techniques are in guitar playing.

1.2.2 Composing Tablatures?

This section’s title is a question, because composing with/on guitar tablatures is not a
common activity. Indeed, as said in Navarret (2013, p. 47): “for most popular music of
the 20th century, the score is not a prerequisite to creation but rather an artefact drawn
from it.”,12 an observation that was also made for Rock’n’Roll in (Bertrand 1998). This
claim is also supported by Tobias (2013) on WPM in general. Through field work with
high-school students creating popular music, Tobias observed that the students never
referred to their work as composing but rather as songwriting, or even “recording”, or
“jamming”. The students created their song dynamically, updating or recording new
tracks throughout production and, in addition, none used actual scores to discuss and
prepare theirmusic, all discussions being based onwhatwas shown in the interface of the
Digital Audio Workstation. Besides, while “[m]usic education literature has traditionally
framed recording as an act of preservation” (Tobias 2013), recording is a key part of the
creative process in popularmusic. Recordings are also themain artefacts used by popular
musicians when learning (L. Green 2002; Navarret 2013). Those observations have direct
implications on tablature usage. A tablature is not designed to be written then directly
performed on stage, but rather may come at a posterior time for memorising and sharing
purposes. In that case, it does not really make sense talking about tablature composition
for WPM. However, guitar players can be composing with tablatures.

12Translated from French.

20

1.2. Modern Guitar Practice

Figure 1.5: Some guitar techniques and their notation as found in AC/DC 2008. Some
symbols have been changed when being reproduced in Guitar Pro.

21

Chapter 1. Musical Background

(a) Chorus excerpt.

(b) Solo excerpt.

Figure 1.6: Tablature excerpts from Highway to Hell by the band AC/DC, written by Bon
Scott, Angus Young andMalcolm Young. Transcription taken fromDadaGP(uncredited).

Even though composition usually happens while testing ideas with the guitar or dur-
ing band practice for instance, the process of writing down a guitar track on tablature can
be part of the compositional process. It was indeed shown that digital software, through
their affordance, have an impact on songwriting (Peterson 2009; Tobias 2013). This is also
the case for guitar tablature notation, as was shown in Bacot et al. (2024). Through in-
terviews with guitar composers, Bacot et al. highlight how some features of the notation
software (Guitar Pro in that instance), have a direct impact on the creation process. For
instance the simple fact of being able to loop a section and listen to it with the playback
function allows the guitarist to transcribe an accompaniment section and then improvise
melodic licks over it until a satisfying one is attained.

In this thesis, we therefore consider tablatures as both composition artefacts and an
iterative notation format that can be enhanced digitally with co-creative tools. The tabla-
ture as an artefact allows us to analyse how guitar tablatures are composed and to derive
musicological knowledge on guitar practice in WPM. At the same time, the notation of
tablature itself can be improved through AI models. The objective being that, if well in-
tegrated in the existing musicians’ workflow, those improvements could make tablature
a part of the composition process in WPM.

1.2.3 Rhythm and Lead Guitar

Like other polyphonic instruments, the guitar can play multiple roles in bands and en-
sembles. Overall, a guitar player has two main ways of playing: they can play melodic
lines, or play chords for accompanying other melodic instruments like a singing voice.
In WPM, those two roles would be called Lead or Rhythm guitar, respectively (Nemeroff

22

1.2. Modern Guitar Practice

Figure 1.7: Main riff of The Number of the Beast, played by Dave Murray, Iron Maiden.
Transcription made manually.

2024). In bands with two guitar players, there will usually be one lead guitarist and one
rhythm guitarist. Famous examples would be: Angus Young (Lead) and Malcolm Young
(Rhythm) from AC/DC, Rodrigo (Lead) and Gabriela (Rhythm) from Rodrigo y Gabriela
or Lita Ford (mostly Lead) and Joan Jett (mostly Rhythm) from The Runaways (among
other bands). A first issue starts to arise: the role of playing lead or rhythm guitar can
evolve and is not always set in stone. In The Runaways for instance, Lita Ford and Joan Jett
both played both roles at some point in the band’s history. Likewise, James Hetfield from
Metallica is a famous rhythm guitarist (Coffman 2023), but Hetfield will also play solos at
time and thus endorse what is considered the lead guitarist role.

In fact, it makes little sense trying to assign permanently a single role to a guitar player
or even to a guitar track inside a song. As an example, we can have a look at the two
tablature excerpts from Figure 1.6. Both are played by the same guitarist – Angus Young
– at different moments of the song Highway to Hell. Figure 1.6a is typical rhythm guitar,
as the guitar only plays chords, underlining the harmonic progression that supports the
vocals during the chorus. On the contrary, Figure 1.6b is a lead guitar section, taken from
the solo of the song.

This simple example is one of many, and supports the hypothesis of Régnier et al.
(2021) – which we also adopt in this thesis – that labelling a tablature as lead or rhythm
guitar should be done at a lower level than the track. As proposed in the aforementioned
paper, we consider that each bar of a tablature can be classified between rhythm and lead
guitar (automatically if needed) and will use such bar-level labelling in the rest of this
thesis. Distinguishing types of guitar playing is required when developing tools for as-
sisting creativity because guitar composers may encounter different issues when compos-
ing accompaniment parts or melodic tracks. One should note, however, that while those
categorisations are understandable and necessary to guitar players to communicate, the
line between the two can be blurry at times. Riffs, are a good example of tricky excerpts,
because they will usually be both rhythmic and melodic (Figure 1.7).

23

2

Machine Learning Models used in this
Thesis

“As our understanding of computers continues to mature, it seems inevitable that
machine learning will play an increasingly central role in computer science and
computer technology.”

Mitchell (1997)

Contents
2.1 About Artificial Intelligence . 26
2.2 Machine Learning Methods . 28

2.2.1 General Considerations . 28
2.2.2 Features in Machine Learning . 30
2.2.3 On Interpretability and Explainability 31
2.2.4 Decision Trees . 32
2.2.5 Naive Bayes Models . 33

2.3 Deep Learning Methods . 34
2.3.1 Neural Networks and Perceptrons 34
2.3.2 Recurrent Neural Networks . 38
2.3.3 Attention-Based Models . 41

A major part of MIR research now consists in using Machine Learning methods to
study musical data, for tasks spanning from computational musicology to text-to-music
generation. This thesis is no exception, and this chapter provides theoretical explanations
of the Artificial Intelligence methods and core Machine Learning concepts used in the
contributions presented parts II and III.

25

Chapter 2. Machine Learning Models used in this Thesis

20
05

20
07

20
09

20
11

20
13

20
15

20
17

20
19

20
21

20
23

20
25

0
20
40
60
80

100
N
or

m
al
is
ed

se
ar

ch
co

un
ts

Figure 2.1: Normalised andmonthly average of the number of queries including theword
“AI” on Google. Data from Google Trends. The spike around 2012 might be due to the
release of AlexNet (Krizhevsky et al. 2017, the model is from 2012 even though this paper
came much later), while the latest increase roughly corresponds to the public release of
ChatGPT (OpenAI 2025).

2.1 About Artificial Intelligence

What is Artificial Intelligence? Artificial Intelligence (AI) is now a term that is widely
used in society even though its actual definition is rarely considered. The Cambridge
English Dictionary1 now defines Artificial Intelligence as:

Definition (Artificial Intelligence) The use or study of computer systems or machines that
have some of the qualities that the human brain has, such as the ability to interpret and produce
language in a way that seems human, recognise or create images, solve problems, and learn from
data supplied to them. BOOK-OPEN

Interestingly, this definition is more specific than the one of Intelligence, from the same
dictionary:

Definition (Intelligence) The ability to learn, understand, and make judgements or have opin-
ions that are based on reason. BOOK-OPEN

The core idea behind Artificial Intelligence is therefore not to make a machine intelli-
gent in the human sense – something that is sometimes called Artificial General Intelligence
(Goertzel 2014) – but rather to design a computer program that tackles tasks commonly
done through human thinking like patterns recognition, language understanding, image
or music creation, etc.2 Those tasks however benefit from high computational power that
allows to tackle problems that can be hard to solve for humans, like clustering samples in
more than 3 dimensions for instance. However, the AI field tends to use terms that hu-
manise the algorithms used (Cooper et al. 2023), and some models are designed to pass

1https://dictionary.cambridge.org/dictionary/english/artificial-intelligence
2Robotics might be considered a field of artificial intelligence with that definition. While some aspects

of robotics might be based on AI algorithms like computer vision, the field is broader and many aspects do
not intersect with AI (Garcia et al. 2007).

26

https://dictionary.cambridge.org/dictionary/english/artificial-intelligence

2.1. About Artificial Intelligence

Artificial Intelligence

Machine Learning

Neural Networks

Deep Learning

LLMs

Figure 2.2: Artificial Intelligence and the sub-categories it encompasses.

as human. The original Turing test,3 for instance, was actually designed to observe if a
computer could pass as human to an external observer through a textual conversation,
with the objective to answer the broad question “Can machines think?” (Turing 1950).

AI sub-types in research AI is a very prevalent term in society since the public release of
ChatGPT inNovember 2022 (see Figure 2.1). OtherAI-powered chatbots, image andmusic
generatorswere released around that time or before, but none seem to have generated that
much public discourse. However, Artificial Intelligence it is not a new field of research
at all. Artificial Intelligence exists as a research field since the 1950s, and it was applied
early to the music field, with for instance Hiller et al. using a computer to generate the
“Illiac Suite” consisting of fourmovements for a string quartet4 (Hiller et al. 1979, pp. 152–
164). Rather than defining AI on its own, we choose to define it by describing how it is
usually implemented, including in this thesis, i.e. withMachine Learning (ML) methods.
The term Machine Learning was coined in Samuel (1959), where the author devises an
algorithm to play checkers that expand its graph of known moves when playing games.
Within ML, multiple sub-categories can be identified. The main one would be Neural
Networks (NNs), a category of programs originally designed as a numerical model of
biological neurones. Those NNs, when stacked together, become Deep Neural Networks
and hereby define the category of Deep Learning (DL). Finally, among DL techniques,
recent architectures that spurred interest in AI like ChatGPT or DeepSeek are dubbed
Large Language Models (LLMs).

A summary of those categorisations of AI techniques is given Figure 2.2, and theoret-
ical explanations of those techniques are provided in the following sections.

3This test ismentioned for its historical value, but should not be considered as a state-of-the-art evaluation
of AI systems (Pease et al. 2011).

4The first movement can be found at: https://youtu.be/n0njBFLQSk8?si=ZvClccIjiPu851Xl (accessed in July
2025).

27

https://youtu.be/n0njBFLQSk8?si=ZvClccIjiPu851Xl

Chapter 2. Machine Learning Models used in this Thesis

2.2 Machine Learning Methods

In this section, we introduce considerations and definitions that apply to the entirety of
ML methods. After presenting common ML tasks, learning paradigms and evaluations
metrics, we discuss what features are and how they are commonly defined and used in
ML. We then present non DL-based ML models used in this thesis: decisions trees and
Naive Bayes models. The decision tree is used in chapter 6 to suggest where to add bends
in a tablature without playing techniques. The Naive Bayes model is used in chapter 5 to
predict the difficulty of a tablature from a set of input features.

2.2.1 General Considerations

Let us start with a definition of Machine Learning:

Definition 2.1 (Machine Learning Mitchell 1997, p. 2) A computer program is said to learn
from experience � with respect to some class of tasks) and performance measure ", if its perfor-
mance at tasks in), as measured by ", improves with experience �.

While we will try to limit “metaphorical anthropomorphism” as much as possible
(Cooper et al. 2023), the term “learning” is used in this chapter in the sense of defini-
tion 2.1. The tasks) that can be tackled byMLmethods are usually split in two categories:
Classification and Regression.

Definition 2.2 (Classification Goodfellow et al. 2016, p. 100) In this type of task, the com-
puter program is asked to specify which of# categories some input belongs to. To solve this task, the
learning algorithm is usually asked to produce a function 5 : R= → {1, . . . , #}. When H = 5 (x),
the model assigns an input described by vector x to a category identified by numeric code H.

Definition 2.3 (Regression Goodfellow et al. 2016, p. 101) In this type of task, the computer
program is asked to predict a numerical value given some input. To solve this task, the learning
algorithm is asked to output a function 5 : R= → R.

MLmethods aim at obtaining a function 5̂ that replicates the desired processing func-
tion 5 on task). The experience � will necessarily be based on a dataset -, and the
designed method should ultimately guarantee 5̂ (G) ' 5 (G), ∀G ∈ -. Different learning
paradigms can arise from this initial statement:

Definition 2.4 (Supervised Learning) Each element G of the dataset is associated with an ex-
pected output H, also called “label” or “target” (Goodfellow et al. 2016, p. 105). In that situation,
the ML method has a defined objective and is trained to output Ĥ = argmax

H∈.
%(H|G) i.e. the target

that is the most likely given the existing (G, H) pairs.

Definition 2.5 (Unsupervised Learning) In an unsupervised learning paradigm, there is no
existing data . that is expected. This includes tasks where no definite output is known, like clus-
tering data samples or compressing information.

28

2.2. Machine Learning Methods

Obtaining labels for supervised learning is expensive, and might be unrealistic for
large datasets. For instance, most of this thesis required processing thousands of tabla-
tures, and manually annotating them would have proven tedious and extremely time-
consuming. Unsupervised learning is nonetheless not entirely satisfactory, because it
limits the tasks to ones where a possible ground-truth is not needed. An intermediate
method is a refinement of unsupervised learning, called self-supervised learning, which
is the main learning paradigm used throughout this thesis.

Definition 2.6 (Self-Supervised Learning de Sa (1993)) Machine Learning paradigmwhere
a model produces its own output labels. from the input dataset -, either through transformations
or combinations of data modalities. The simplest example might be models for lossless compression
(autoencoders), where the expected output is the input reproduced identically.

It is also possible to train a model on unlabelled data by exploiting information of the
performance measure ".

Definition 2.7 (Reinforcement Learning Goodfellow et al. 2016, p. 106) Machine Learning
paradigm where the algorithm interacts with an environment, creating a feedback loop between the
system and the experiments. The model learns iteratively what actions lead to the best result, ac-
cording to a performance measure". This paradigm does not require any labels but only a definite
measure of the model’s performance. Typical applications are on trainingmodels for playing games.

For all those learning paradigms, the initial phase of fitting the 5̂ function using the
available data is called training. A common issue that can arise when training aMLmodel
is that of overfitting.

Definition 2.8 (Overfitting Briot et al. 2020, p. 269) The situation for a machine learning al-
gorithm when the model learnt is well fit to the training data but not to the evaluation data. This
means the inability of the model to generalise well.

In music-related tasks, overfitting can be a pernicious issue, often hard to detect. For
instance, music style classifiers models can be biased by characteristics as subtle as the
way a song is mastered5 (Sturm 2012).

One of the most common ways to limit overfitting and weak generalisation of ML
models is to have three different subsets of data for each of three phases: train, validation
and test. The train set will be used to fit the model until a satisfactory performance is
reached with 5̂ . The validation set is used throughout the training phase to measure
when the model starts overfitting. Because this data is not used directly during training,
a decrease in the performancemeasure" for the validation set suggests that the model is
starting to overfit the training data and lose generalisation properties. The test set should
not be used during training at all, as it is data that is set apart from the start to ultimately

5Mastering is the action of modifying the frequency spectrum of an audio file to ensure it maintains
auditory qualities on different loudspeakers.

29

Chapter 2. Machine Learning Models used in this Thesis

measure the performance of the model. Ideally, test data should be taken from another
source than train and validation data to limit internal biases, though this is not always
possible. Once themodel is trained, it can be used to process new unknown data samples,
and this procedure is dubbed inference.

Performancemeasures. Theperformancemeasure" required for aMLmethod (defini-
tion 2.1) depends on the task category at hand. We focus here onmeasures for supervised
and self-supervised learning paradigms, where performance measures can be readily de-
fined. Let us write the expected results as Y, and the predictions of the ML model as Ŷ.
In regression tasks, the Mean Squared Error (MSE) can be used, defined as:

MSE
(
Y, Ŷ

)
=

1
=

=∑
8=1

(
H8 − Ĥ8

)2 (2.1)

For classification tasks, all values from Y and Ŷ are expected to be between 0 and 1,
and the Binary Cross-Entropy (BCE) Loss is one of themost common performancemeasure:

BCE
(
Y, Ŷ

)
= − 1

=

=∑
8=1

(
H8 log(Ĥ8) + (1 − H8) log(1 − Ĥ8)

)
(2.2)

While this loss is for binary classification problems (only 2 classes possible), it can be
generalised to any number of classes. Technically, the two measures presented above are
loss functions, the closer they are to 0, the better. A performance measure derived from
those would need to be their reciprocal, so that a better performing model has a higher
measure value.

Performance Measures for music-related tasks. The two measures presented before
are generic metrics that can be used to fit an ML model in an agnostic manner to the task
at hand. However, musical tasks might need more complex measures that analyse the
musical content in some way. In the next chapters, we will present new metrics designed
for the musical tasks studied, other metrics related to the field of MIR can be found in
Raffel et al. (2014). Some tasks are however not straightforward to evaluate, especially
when some kind of creativity is expected from the model. In such situations, thoroughly
thought-out quantitative metrics might be useful, but they should be complemented by
appropriate qualitative human evaluations (Jordanous 2012).

2.2.2 Features in Machine Learning

A feature, sometimes also called a descriptor, refers to a “piece of information included in
the representation of a [data item]” (Goodfellow et al. 2016, p. 3).

Feature Engineering consists in manually preprocessing data to extract relevant feature
representations. For music-related tasks for instance, the input data can be a tablature
in Guitar Pro format, and the features can represent information about the chords played

30

2.2. Machine Learning Methods

in each bar (Régnier et al. 2021). Examples of features that can be extracted from audio
signals are reported in Peeters (2004). On symbolic music data, aspects like functional
harmony (Gotham et al. 2023) or texture (Giraud et al. 2014) can also be analysed and
used as features for further numerical studies. One of the main limitations of feature
engineering is that it usually requires extensive domain knowledge for the task at hand.
Selecting appropriate features and pre-processing the data to extract them can be time-
consuming for the researcher during the selection process. However, manually selecting
high-level features ensures that the ML models used downstream benefit from a mean-
ingful data representation. Pre-processing data in such a manner allows to reduce the
dimensionality of the data by removing information unrelated to the task at hand, e.g. if
one studies the chord progression of rock songs, they can remove melodic and rhythmic
information. In this thesis, manual feature engineering is used to study which features
allow to understand when bends are used in guitar tablature (chapter 6) or what makes
a tablature difficult to play (chapter 5). Features are also used to determine the level of a
guitar player and what songs they should learn with their current expertise (chapter 4).

To simplify the process of feature selection, some ML works permit automatically
selecting intermediate representations and features for a complex task. This approach,
dubbed feature learning or representation learning, can be relevant for studying music, be-
cause songs contain complex interleaved information such as chords,melodies and rhythm
that interact with one another simultaneously but also through time. While fields like
representation learning specifically study how to efficiently extract features from the in-
put data, this action is also done intrinsically by most DL models, where information is
condensed as it goes deeper in the network. Those approaches, while efficient when no
features can be defined beforehand (because they are too complex to define or do not
capture the aspects studied), require heavy computational loads because they use larger
models and repeat the feature extraction process every time a sample is passed even if it
is known. We implement such a DL model in chapter 9, where a BiLSTM model (see sec-
tion 2.3) computes an intermediate representation that is used as input by a transformer
model (ibid).

2.2.3 On Interpretability and Explainability

Using features inMLhas the advantage to embedhigh-level knowledge in representations
that can be used by digital models. These features can allow for more understandable
results as they often directly derive from human representations. However, anMLmodel
is not necessarily interpretable and explainable. Let us use the definitions provided in Dib
(2024).

Definition (Explainability) The explainability of a machine learning model 5 can be defined
as its ability to provide understandable, clear, and accessible explanations to human users about
the underlying reasons for specific predictions generated by the model. Formally, 5 is considered
explainable if ∀(G, H) ∈ -×. , the user can understand how the output H is derived from the input

31

Chapter 2. Machine Learning Models used in this Thesis

G. In other words, explainability aims to identify and make understandable the specific aspects of
this observation that influenced the model’s decision. BOOK-OPEN

Definition (Interpretability) The interpretability of a machine learning model 5 can be defined
as its ability to be understood and interpreted in its entirety, allowing human users to grasp the
overall functioning of the model, including its internal components, relationships between vari-
ables, and decision-making process. Formally, 5 is considered interpretable if ∀(G, H) ∈ - × .,
the decision-making process. = 5 (-) is understandable by users. In other words, interpretability
seeks to unveil the internal aspects of the model that led to the final decision, providing a more
holistic view of its decision-making process. BOOK-OPEN

The deeper and more complex anMLmodel gets, the less interpretable it becomes, as
outputs may be influenced by unsuspected factors (Sturm 2017). Besides, not all models
are explainable. Even a transformer network can technically be dissected to analyse what
drove the predictions as it is done in the original paper (Vaswani et al. 2017), but those
analyses can soon be intractable with deep and complex models. While techniques like
LIME (Ribeiro et al. 2016) and SHAP (Lundberg et al. 2017) aims atmaking any prediction
explainable, they are not applicable to all network architectures. Overall, to guarantee the
interpretability and explainability of an ML method, one should consider using simple
models, like the ones presented hereafter.

2.2.4 Decision Trees

In chapter 6, weuse a decision tree to suggestwhere to addplaying techniques in amelody
written in tablature notation. Decision trees are a category of ML models that represent
a succession of choices as a tree and can be used for classification tasks. A mock exam-
ple of a decision tree for determining which style of metal a song belongs to is provided
Figure 2.3. The root of the tree is its starting point, at the top, and it gradually splits at
new nodes. If a node is the last of its branch (i.e. it is not split further), it is called a leaf
(or a terminal node/subset). The splits are defined by logical equations on features of the
input data like, in the example provided, the lyrical content and instrumentation used. If
nodes can only be split in two branches, we talk about a binary decision tree.

While a decision tree can be made manually in simple cases, it can also be built auto-
matically from available data in a supervised learning paradigm. Algorithms that auto-
matically build decision trees from data are available in dedicated Python libraries such
as scikit-learn (Pedregosa et al. 2011). In essence, the goal of those algorithms is to
find the best splits so that each leaf contains only samples belonging to a single class of
the input dataset (even though the same class can be found on several leaves). The core
process is a function that ensures that the purity – the class homogeneity of data samples
in a node – of the new nodes is higher than the parent node. A commonmetric tomeasure
the impurity (which has to be minimised) is the Gini criterion (Breiman et al. 1984):

32

2.2. Machine Learning Methods

Band has a guitar?

Not Metal

N

Lyrics about life
and society?

Rap elements?

Nu Metal

Y

Thrash Metal

N

Y

Average BPM

Heavy Metal

≥70,<100

Drone Metal

<70

Fantasy-like stories?

Power Metal

Y

Speed Metal

N

≥ 100

N

Y

Figure 2.3: Dummy decision tree to disambiguate metal styles for a given song, leaves are
written in bold, Y/N stands for Yes/No. This is of course an oversimplification and is not
intended as a valid description of metal styles whatsoever.

�(=) =
∑
2∈C

?=2(1 − ?=2). (Gini)

where = is the node studied, C the set of possible classes, and ?=2 is the proportion of
samples belonging to class 2 on node =. Once a decision tree has been fitted on training
data, it can be used for inference on newdata by simply following the decision boundaries
to move from one branch to the next. The class assigned to the new sample is then the
final leaf attained by the model.

2.2.5 Naive Bayes Models

Another common ML model for classification is the Naive Bayes Classifier, which we use
in chapter 5 to predict the difficulty class of bass and guitar tablatures. As the name
suggests, those techniques are based on the Bayes’ theorem:

%(�|�) = %(�)%(�|�)
%(�) if %(�) ≠ 0. (2.3)

Naive Bayes can be used to build classifiers that should predict one of" output classes
� 9 , 9 ∈ J1, "K, given a set of # input features �8 , 8 ∈ J1, #K. In that case, the Bayes’

33

Chapter 2. Machine Learning Models used in this Thesis

Theorem can be rewritten as follows:

%(� 9|�1 ,�#) =
%(� 9)%(�1 , . . . , �# |� 9)

%(�1 , . . . , �#)
. (2.4)

For classification, the model is expected to find �̂ 9 :

�̂ 9 = argmax
9∈J1,"K

%(� 9|�1 , . . . , �#). (2.5)

Now comes the assumption that make those classifiers “naive”: all input features are
considered independent from one another (they only depend of the class � 9). While this
assumption can be unrealistic, it allows to simplify %(�1 , . . . , �# |� 9) greatly (using the
probability chain rule):

%(�1 , . . . , �# |� 9) =
#∏
8=1

%(�8|� 9). (2.6)

We then obtain the final equation Naive Bayes models aim at optimising:

�̂ 9 = argmax
9∈J1,"K

%(� 9)
#∏
8=1

%(�8|� 9). (2.7)

Naive Bayes classifiers are fitted in a supervised fashion. Several options are available
to model the a priori probabilities %(� 9) and the likelihoods %(�8|� 9). The %(� 9) are usually
a uniform distribution based on the observed class frequencies in the training dataset. For
continuous feature values, likelihoods are often estimated using a Gaussian Naive Bayes
(GNB) model that assumes a normal distribution of the values for each input feature,
where the mean and standard deviation are estimated from the data. The GNB is the
version used in chapter 5.

2.3 Deep Learning Methods

This section aims at introducing neural networks and the Deep Learning models used in
future chapters. In chapter 7, a MultiLayer Perceptron is used to suggest guitar positions,
while chapters 8 and 9 use transformer networks to generate rhythm guitar or bass tab-
latures, respectively. For a more detailed presentation of those networks, and others, one
can also read Briot et al. (2020), Goodfellow et al. (2016), and Le Cun (2019).

2.3.1 Neural Networks and Perceptrons

Deep Learning methods are a specific part of Machine Learning, but they are also a sub-
category of Neural Networks (NNs), sometimes also called Artificial Neural Networks.
The adjective neural comes from the fact that the first research on such methods tried
to numerically replicate the functioning of neurons. The first mathematical modelling of
binary artificial neurons can be found inMcCulloch et al. (1943) where a number of inputs

34

2.3. Deep Learning Methods

...
�

$1
Σ

�1

�2

�3

�=

�1

Input
layer

Output
layer

Figure 2.4: An artificial neuron as introduced inMcCulloch et al. (1943). The binary inputs
are summed into an activation value, which is further converted by a step function of
threshold �.

goes into a “cell” and are summed, activating the input (1) if a threshold is reached, or
no activation (0) otherwise. A graphical representation of such an artificial neuron is
proposed Figure 2.4.

This model, though simple, was further adapted in Rosenblatt (1958) where the au-
thors softens some of the original assumptions. The main modification is that the binary
input values now go through a weighted sum instead of a standard one. The other im-
portant improvement is that Rosenblatt suggests updating those weights dynamically on
known data, effectively conducting supervised learning. He called this model the Percep-
tron, of which we propose a representation in Figure 2.5.

Like ML models, neural networks are designed to find an estimate 5̂ of a function
5 : G ↦→ H, ∀(G, H) ∈ - × .. With a perceptron, 5̂ is defined as:

5̂ : G ↦→ �

(
=∑
8=1

F8 .G8 − �

)
. (2.8)

where � is the Heaviside step function, � the decision threshold, F8 the weights of the
network and G8 the elements of the input vector. However, the perceptron is limited in
the functions it can model, because it is entirely linear. For this reason, a perceptron can
only be used on data that is linearly separable. More precisely, if a perceptron has = differ-
ent inputs, it can only define a hyperplane in this =-dimensional space, i.e. a boundary
defined by = − 1 parameters. This might not be an issue in some cases, but imitating the
logical exclusive OR (XOR) is a simple example of the limitations of perceptrons (Min-
sky et al. 1969). To address this issue and a few others, the MultiLayer Perceptron (MLP)
architecture introduces the following main improvements:

35

Chapter 2. Machine Learning Models used in this Thesis

F1

F2

F3

...

F=

�

$1
ResultΣ

�1

�2

�3

�=

�1

Input
layer

Output
layer

Update weights

Figure 2.5: The perceptron (Rosenblatt 1958).

• The inputs and outputs are no longer binary and can be real values;

• Hidden layers can be added between the input and output layers, with a varying
number of weights. Those layers allow to add depth to the perceptron and thus
model more complex functions, each layer multiplying the previous layer’s outputs
by new weights;

• All layers can include a bias, a weight that is not dependent on the input data;

• All layers but the input are followed by a differentiable (required for training) activa-
tion function;

• The weights are updated based on training data using backpropagation.

The final MLP with all those modifications is presented Figure 2.6, and the newly
introduced activation functions and backpropagation principle are introduced hereafter.

2.3.1.1 Activation Functions

The perceptron can only process linearly separable problems. Even with more weights
and layers, an MLP has the same constraints if no non-linear operations are introduced
in the processing. The activation functions (denoted with ! in Figure 2.6) are used to
add non-linearity into the neural network, thus allowing it to model non-linear functions.
Four common activation functions are represented Figure 2.7. Because anMLP can output
continuous values, it might also be desirable to enforce the model to only return values

36

2.3. Deep Learning Methods

F1,0

F1,1

F1,2

F1,3

...

F1,=

F2,0

F2,1

F2,2

...
F2,�

!ℎ

!ℎ

...
!ℎ

Σ

Σ

!$

!$

$1

$2

1

�1

�2

�3

�=

�1

�2

1

Input
layer

Hidden
layer

Hidden Activation
layer

Output
layer

Output Activation
layer

Figure 2.6: A Multilayer Perceptron with = inputs and one input bias coefficient F1,0. It
also has one hidden layer of size � with a bias coefficient F2,0 and an activation function
!ℎ . The final activation function is !$. Because each element of each layer is connected
to all elements of the next, we call this a Feed-Forward NN.

between a small subset of R, to use the output as a class probability for instance. This
is usually done with the sigmoid or the tanh function which map R to [0, 1] or [−1, 1],
respectively. Activation functions can also be used after hidden layers to add even more
non-linearity within the model. The previously mentioned functions can be used, but
functions that limit the amount of negative values can be used as well, like the Rectified
Linear Unit (ReLU) or the Gaussian Error Linear Unit (GELU).

Activation functions could theoretically be any function that is beneficial to themodel’s
purpose. However, those functions need to be differentiable to be compatiblewith the back-
propagation training technique, presented below.

2.3.1.2 Loss Functions and Backpropagation

When stacking layers in models, like in an MLP, we enter the realm of Deep Learning. In
a deep model with a lot of connections, updating weights to better reproduce a desired
function can be complicated. The solutionwas found in using backpropagation, usually im-
plemented through gradient descent, to propagate errors backwards in a neural network
and update its weights accordingly. To put it simply, gradient descent consists in finding
the direction of the steepest slope of a loss function, and updating the weights in that
direction. Let us call this loss function ℒ, it has to be minimised to reach the best perfor-
mance of the model. We want to find the optimal weight configuration w∗ on a dataset
(X,Y):

37

Chapter 2. Machine Learning Models used in this Thesis

−4 −2 0 2 4

−1

0

1

H = tanh(G)

−4 −2 0 2 4

0

0.5

1

Sigmoid: H = 1
1+exp(−G)

−4 −2 0 2 4

0

1

2 ReLu:
H = max(0, G)

−6 −4 −2 0 2

0

1

2 GELU:
H = 1

2 G
(
1 + erf

(
G/

√
2
))

Figure 2.7: Activation functions, from left to right and top to bottom: tanh, sigmoid, ReLU
and GELU.

w∗ = argmin
w

ℒ
(
5̂ (w,X,Y)

)
. (2.9)

To do so, we compute the partial derivative of the loss function with respect to each
weight F8 of the model and use it to update each weight of the model:

F8 = F8 − �
%ℒ

(
5̂ (w,X,Y)

)
%F8

(2.10)

Because we want to minimise the loss value, we subtract the derivate to descend the
gradient slope when updating the weights. The � parameter is called the learning rate
and controls the amount of each weight’s update. This core principle can be improved
in many ways, for example by adding momentum to the gradient descent (Kingma et al.
2015), learning rate scheduling (Alonso-Jiménez et al. 2023), etc.

2.3.2 Recurrent Neural Networks

InMLPs, each layer is entirely connected to the previous one, and only processes informa-
tion from that previous layer. Those types of networks are qualified as “Feed-Forward”.
However, there are situations where the sequential nature of the input data is important,
like when processing text, or music, for instance. For those situations, a Recurrent Neural
Network (RNN) should be used (Rumelhart et al. 1986). Compared to a regular neural
network, an RNN will also include a cyclic connection that allows past information of a
sequence to be retained (Figure 2.8). The exact mechanism for retaining that information

38

2.3. Deep Learning Methods

� $

Recurrent Connection

Figure 2.8: A simple RNN with one recurrent connection.

Forget Gate Input Gate Output Gate

Matrix Multiplication

Concatenation

Fully connected network

Addition

Sigmoid

Figure 2.9: An LSTM cell and its connections to the previous and next ones. Original
figure by Ixnay (Wikimedia Commons).

can differ, two common architectures are discussed hereafter: the Long Short-TermMem-
ory (LSTM) network and the Gated Recurrent Unit (GRU). Both architectures are called
gatedRNNs and have parts charged in retaining information from processing one element
of a sequence to the next.

Data Pre-processing. RNNs cannot use textual ormusical data as input directly twopre-
processing steps are required: i) the files need to be organised into sequences of multiple
chunks, ii) each chunk itself has to be represented as a vector of float values. Those two
pre-processing steps are called tokenisation and embeddings computation, respectively. The
tokenisation consists in splitting the sequence into unique elements of a vocabulary. For
text, it could be characters, words or phonemes. For symbolic music, it will depend on
the task at hand, but most tokenisation schemes will represent the data at the note level
(Le et al. 2024). Once the data can be represented as a sequence of vocabulary elements, it
is multiplied by a matrix which weights are learnt during training to represent sequence
elements in an embedding space. In language processing, embeddings inform a model
on what words have similar or opposite meanings. Likewise in music, embeddings are
used to locate tokens in a multi-dimensional space in a way that informs the model on
their inter-relations.

LSTM The Long Short-Term Memory network has been introduced in Hochreiter et al.
(1997) and one LSTM cell is represented Figure 2.9. An LSTMnetwork ismade ofmultiple
LSTM units connected to one another and gets its name from the fact that it retain long-
term and short-termmemory in two separate variables. At its core, an LSTMunit contains

39

Chapter 2. Machine Learning Models used in this Thesis

Reset Gate Update Gate

Matrix Multiplication

Fully connected network

Addition

Sigmoid

Figure 2.10: One Gated Recurrent Unit and the previous and next units. Original figure
by Ixnay (Wikimedia Commons).

a cell state 2C that acts as the long-term memory, and a hidden state ℎC that serves as the
output at each time step as well as the short-term memory. To control how information
is retained from one unit to the next, the LSTM uses three main gates: the forget gate,
the input gate, and the output gate. Each gate multiply its weights with the input, and
add a bias coefficient, all parameters are updated in the training process. The forget gate
controls how much of the long-term memory persists within the LSTM unit, given the
current input GC and the past hidden state ℎC−1. The input gate controls how much of the
short-term memory (related to the current input GC) should be stored in the cell state (the
long-termmemory). Finally, the output gate controls what part of the updated long-term
memory (the cell state) should be copied to the hidden state and sent to the next unit.6

GRU The Gated Recurrent Unit was introduced in Cho et al. (2014) and is very similar
to the LSTM architecture (Figure 2.10). Now the short and long-termmemories are mixed
in a single memory variable, and the unit only has a hidden state ℎC that is sent to the next
unit. The Forget and Input Gate are merged into an Update Gate that controls how much
information from the previous hidden state should be carried over. The Reset Gate is used
to control the balance between the input data and the hidden state that are transmitted to
the output. Because the GRU has one less gate, it requires a little less operations that an
LSTM unit, while having similar performance.

Finally, both architectures (and RNNs in general) can be made bidirectional by dupli-
cating the model but changing the direction of the memory propagation. Such models
allow to capture more complex dependencies and are called BiLSTMs or BiGRUs. Bidi-
rectional RNNs can better process sequences where the end of the input has an impact on
the beginning of the output. An NLP example is a model designed to switch a sentence
from the active form to the passive form: “The cat ate the mouse” → “The mouse was
eaten by the cat”.

6For a short but detailed explanation, we recommend watching https://www.youtube.com/watch?v=
YCzL96nL7j0. Accessed in June 2025.

40

https://www.youtube.com/watch?v=YCzL96nL7j0
https://www.youtube.com/watch?v=YCzL96nL7j0

2.3. Deep Learning Methods

2.3.3 Attention-Based Models

The RNNs allow to process data sequences and have had a significant impact on research
in language and music. However, those networks have two major limitations: i) the data
needs to be processed sequentially, which means that the training process cannot be par-
allelised, increasing the time required for training; ii) the memory is maintained through-
out the sequence and gradually fades out, which means that the end of the sequence will
only beweakly linked to the beginning. Both issueswere addressed by the introduction of
the transformer network (Figure 2.13), first presented in Vaswani et al. (2017). This section
introduces the principles of a transformer network, more detailed technical explanations
can be found in the original paper or Alammar (2018).

Q K V

MatMul

Scale

Mask

Softmax

MatMul

Dot Product

Scaled

Dot Product

Alignments

Attention Scores

Context Vector

Figure 2.11: Internal prin-
ciple of the self-attention
mechanism in transformer
networks. Masking is op-
tional. Original graph by
dvgodoy.

Like RNNs, a transformer network requires the input
to be tokenised and represented in embeddings. In addi-
tion to the regular embeddings, transformers need a last
positional embedding (sometimes also called encoding). This
additional information is needed for the transformer to re-
tain the position of the tokens in the sequence, since it pro-
cesses tokens from the sequence in parallel. In the original
paper, it was based on sinusoidal functionswhich frequen-
cies depend on the position of the token of the sequence.
However, in newer approaches, the positional embeddings
are obtained by training a custom MLP model. Now that
the input data is converted to vectors, it can be processed
by the model.

The core principle of a transformer network for pro-
cessing token sequences is self-attention. It allows the
model to link all elements of the input and output se-
quences to one another within and across sequences. The
computational process is represented Figure 2.11. The &,
 and + variables are called Query, Key, and Value and are
all obtained by processing a token of the sequence with a
weight matrix (one different for each variable). The intu-

ition behind those variables is that the query represents a reference token that will be
compared to another token, represented by the key, for every token of the sequence (in-
cluding itself). The value is an additional learnable representation of a token that deter-
mines the final information that is preserved by the model. The matrices for &, and
+ are trained to obtain what could be compared to new embeddings. “MatMul” is short
for Matrix Multiplication and the mask is an optional binary mask to ignore some tokens
that should not be seen. For instance, it might be necessary to mask future tokens when
training, to imitate the situation when the transformer generates tokens (and thus does
not have access to future data). Finally, the result is passed to a SoftMax function, defined

41

https://github.com/dvgodoy/dl-visuals

Chapter 2. Machine Learning Models used in this Thesis

Scaled Dot-Product AttentionScaled Dot-Product Attention

LinearLinear

Q K V

Linear LinearLinearLinear LinearLinearLinear

Scaled Dot-Product Attention

Concat

Linear

Context Vectors

Context Vector

Heads

Figure 2.12: Attention with multiple attention heads. Original graph by dvgodoy.

below, that maps a vector of real values to [0, 1], ensuring that the maximum value of the
original vector is closest to 1 in the output.

SoftMax(x)8 =
4G8∑
G 9∈x 4

G 9
(2.11)

After this step, we get what are called the attention scores that represent what tokens
of the sequence the query should most attend to. The final result is obtained from multi-
plying the value (which is updated during training) by those attention scores.

Finally, it is worth noting that everything can be done in parallel when computing
attention. All tokens from a sequence can be used as the query at once, and a transformer
can even have multiple attention heads to allow the model to attend to the sequence in
multiple ways at once (Figure 2.12). An encoder and a decoder network can then be built
by stacking self-attention layers, connected byMLPs. The encoder and decoder have their
own self-attention layers to attend to the input and output sequences respectively, but the
decoder also has a cross-attention layer that works identically to self-attention, except that
it allows to link the decoder’s output with the encoder’s input (Figure 2.13).

The success of the transformer model on NLP tasks soon motivated its use in music,
and the development of new models. Interestingly, both the encoder and the decoder of
the transformermodel can be used separately and performwell on their own sets of tasks.
The encoder used alone and pretrainedwithmasked tokens is usually called Bidirectional
Encoder Representations from Transformers (BERT) and is appropriate for music under-
standing and analysis tasks (Devlin et al. 2019). It will generally be used as a pre-trained
model and complemented by a smaller model that benefits from the learned represen-
tation and is fine-tuned for solving a new downstream task. Conversely, the decoder
part trained for next-token prediction is well-suited for generation tasks and is dubbed
Generative Pretrained Transformer (GPT), which is the basis of most LLMs like ChatGPT
(Radford et al. 2018).

42

https://github.com/dvgodoy/dl-visuals

2.3. Deep Learning Methods

Embeddings/

Projections

Embeddings/

Projections

+Positional
Encoding + Positional

Encoding

Source Sequence Shifted

Target Sequence

Norm

Multi-Headed

Self-Attention

V K Q

+

Norm

Feed-Forward

Network

+

Norm

Norm

Masked

Multi-Headed

Self-Attention

V K Q

+

Norm

Multi-Headed

Cross-Attention

V K Q

+

Norm

Feed-Forward

Network

+

Norm

Linear

Predictions

x N Layers x N Layers

Figure 2.13: Diagram of the full Transformer Architecture. The encoder is on the left, the
decoder on the right. Original graph by dvgodoy.

43

https://github.com/dvgodoy/dl-visuals

3

State of the Art

“Everything anyone ever makes is inspired by what’s in their head – what they’ve played
or read or encountered or thought a lot about.”

Cavanagh (2019)

Contents
3.1 Tablature Data in MIR Research . 46

3.1.1 Tablature Datasets and Representations 46
3.1.2 mySongBook . 47
3.1.3 The DadaGP Dataset . 48
3.1.4 Digital Representations of Tablatures 50
3.1.5 Tablatures in Computational Musicology 51

3.2 Assisted Guitar Composition and Tablature Generation 57
3.2.1 Music Generation in the Audio and Symbolic Domains 57
3.2.2 Tablatures in Symbolic Music Generation 59
3.2.3 Automatic Tablature Arrangement 60
3.2.4 Tablature Generation Models for Co-Creativity 61

3.3 Computer Assisted Guitar Education . 62
3.3.1 Music Difficulty Estimation . 62
3.3.2 Games and AI-Models for Learning and Teaching Guitar 64

While the mir-datasets repository gathers 238 datasets1 for MIR research, only 6
datasets mention guitar explicitly in their content, and only one of them (DadaGP, Sar-
mento et al. (2021)) is not designed for transcription and contains tablatures instead of
audio recordings. This does not mean, however, that there have been no research on
guitar tablatures since the first ISMIR conference in 2000, as this chapter first discusses.
Then, following the categorisation of the contributions of this thesis (parts II and III),
this chapter includes two main parts focusing on computational tools to assist tablature
composition (section 3.2) and guitar pedagogy (section 3.3).

1https://github.com/ismir/mir-datasets, accessed in June 2025.

45

https://github.com/ismir/mir-datasets

Chapter 3. State of the Art

3.1 Tablature Data in MIR Research

Guitar in WPM is relatively little studied by the MIR community, especially when com-
pared to other instruments like the piano, or other musical styles like Western classical
music. Indeed, since the first ISMIR edition in 2000 up to 2024, 39 papers mention “gui-
tar” in their title or abstract, versus 148 for “piano”.2 Tablatures were even less studied
with only 9 ISMIR papers during the same period. In this section, we discuss how guitar
was studied since the early 2000s, and how tablature data fit into that research. We then
present two major tablature datasets we used in this work: mySongBook and DadaGP.
After discussing other tablature datasets also available to researchers, we present pos-
sible digital representations of tablatures, and how tablatures have been studied from a
computational musicology perspective.

3.1.1 Tablature Datasets and Representations

Guitar and Tablature Data in MIR Research The rarity of MIR research on (guitar)
tablature might be both the origin and the consequence of a lack of appropriate datasets
freely available to researchers. Indeed, guitar has not been represented in publicly avail-
able research datasets until fairly recently, its earliest inclusion being in audio datasets for
chord recognition (Bosch et al. 2012), sound effects detection (Stein et al. 2010) or tran-
scription (Kehling et al. 2014). There have been research on guitar and even tablatures
before the 2010s, but it usually came with a reduced dataset assembled specifically for
the question under scrutiny. The data was kept internal, and papers would provide infor-
mation to varying extents for other researchers to reproduce the dataset on their own (see
Table 3.2 at the end of this section). For instance, one of the earliest work of research on
computer science applied to guitar music, Sayegh (1989), was almost entirely theoretical,
supporting the proposed approach through simple musical examples like scales. Other
works used audio data that was not shared publicly, for chord recognition for instance
(Cabral et al. 2005; Zhang et al. 2008) or instrument classification (Eichner et al. 2006;
Hamel et al. 2009). Using internal datasets was common practice and is still encountered
in some recent works. In Table 3.2, we present research that specifically studied guitar tab-
latures, but with data not released publicly. We report on the amount of information they
provide regarding the data used, to reflect on the actual reproducibility of the presented
approach.

The first guitar tablature datasets publicly and openly available to researchers are tech-
nically datasets for Automatic Music Transcription (AMT). The first one might be the
IDMT-SMT Guitar set (Kehling et al. 2014), which was followed by other datasets like
GuitarSet (Xi et al. 2018), EGDB (Y.-H. Chen et al. 2022), or GAPS (Riley et al. 2024a).
Because those datasets are designed for AMT, they contain audio data aligned with the

2I am indebted to Dinh-Viet-Toan Le for sharing with me the paper analysis tool he created for his survey
(Le et al. 2024).

46

3.1. Tablature Data in MIR Research

Figure 3.1: Wordcloud representation of the words contained in the filenames of the
mySongBook database.

corresponding transcription, usually in tablature format. For this reason, they could tech-
nically be used by researchers to study tablatures. However, the studies would be limited
because of the musical examples recorded for those datasets. For instance, GuitarSet con-
tains recordings and transcriptions of guitarists playing three different chord progres-
sions in five different styles. Likewise EGDB recordings are based on tablatures of “solos,
arpeggios and comping in various genres”. GAPS is an exception as is contains 300 perfor-
mances of Western classical guitar pieces, with the corresponding tablatures. Neverthe-
less, open tablature datasets not specifically designed forAMTbut generalMIR taskswere
also released. In Table 3.3, we present tablature datasets openly available to researchers
and the papers that introduced them. The datasets used in this thesis, mySongBook and
DadaGP, are discussed more extensively hereafter.

3.1.2 mySongBook

Most early work of this thesis has been conducted with the mySongBook (MSB) database.
An excerpt of this database, property of theArobas Music company, was gracefully shared
to our research team thanks to the initiative of Louis Bigo who got in touch with the
company, also based in Lille.

MSB is a tablature catalogue3 that contains professionally transcribed tablatures in a
variety of musical styles, like WPM in general but also Western classical music (see Fig-
ure 3.1). The full database grows weekly with new transcriptions, the version available
in the team dates back to 2017 and contains 2115 guitar tablature files in the latest Guitar
Pro format at the time: .gp. Those tablatures are transcriptions of songs from 308 differ-
ent artists (with some songs being traditional music from various cultures, or educational
content that have no clear artists identified). There are 1054 songs in total, out of which
304 are re-arrangements either to adapt a song to guitar, or to reproduce a live perfor-
mance of it. Those arrangements can be the only occurrence of a song in the dataset, or
another version of a song already transcribed, as is the case for 110 arrangements. For in-
stance, a guitar tablature might be a transcription of the original version of a song, while

3https://www.guitar-pro.com/tabs, accessed in April 2025.

47

https://www.guitar-pro.com/tabs

Chapter 3. State of the Art

another tablature is a transcription of a specific live performance.
Being proprietary, the dataset cannot be shared with our research community. How-

ever, analyses and other musical descriptors were released as the Algomus team worked
with MSB, at a time when no other large tablature datasets were available. More pre-
cisely, Cournut et al. (2021) shared the vector representations of the 1000 most common
chords found in the MSB dataset, available at www.algomus.fr/data. The dataset was also
used in the team to analyse rhythm and lead guitar tablatures (subsection 1.2.3) and train a
model to automatically identify rhythm guitar bars (Régnier et al. 2021). Feature values
computed on 102 guitar tablatures with manual annotations of bars that are considered
rhythm guitar were also shared publicly at the previous link. Finally, a parser converting
.gp files to music21 Python objects (Cuthbert et al. 2010) was also released in Cournut
et al. (2020).

Strengths and Weaknesses. The MSB database has allowed the Algomus team to con-
duct research on guitar tablatures at a time where guitar tablatures datasets were not
adapted to computational musicology research (cf. Table 3.3). This dataset is particularly
useful for its quality, since it comes from professional transcribers who ensured that the
tablatures produced are as close as possible to the original songs. The tablatures are also
very detailed, including extensive guitar techniques notation, structure markings, pre-
configured effect pedals, etc. that could be lacking or evenmissing at times from amateur
transcriptions on websites like Ultimate Guitar. Nonetheless, this dataset is relatively
small, with 2115 tablatures, which is bigger than most tablature collections used in the
literature before (Table 3.2), but still not enough for most modern Deep Learning models
to solve complex tasks on guitar music data. Besides, the proprietary nature of MSB was
incompatible with the good practices of open science we tried to follow during this the-
sis, sharing partial data or intermediate representations hindering actual reproducibility.
These limitations justified the gradual switch from MSB to the DadaGP dataset, released
in 2021.

3.1.3 The DadaGP Dataset

An importantmilestone for guitar tablature researchwas the release of theDadaGPdataset
in Sarmento et al. (2021) that provided researchers with more than 25 000 tablatures of
WPM. This dataset results of the joint efforts of the Dadabots duo4 and Pedro Sarmento
along with colleagues and supervisors. Tablatures were obtained from publicly available
tab sharing websites. This dataset is described to a great extent in the original paper and
Sarmento (2024) so we will only provide a brief overview of its content and the research
it enabled.

4https://www.youtube.com/watch?v=JF2p0Hlg_5U, accessed in June 2025.

48

www.algomus.fr/data
https://www.youtube.com/watch?v=JF2p0Hlg_5U

3.1. Tablature Data in MIR Research

Figure 3.2: Wordcloud representation of the words contained in the filenames of the
DadaGP dataset. This word cloud contains more structure information like “Song”, “In-
tro”, “Solo” compared to MSB because it contains multiple duplicate tablatures of some
songs where only a part was transcribed.

DadaGP contains 26 181 songs composed by 882 different artists that span 739 musi-
cal styles.5 While most songs can be considered rock or metal music in a broad sense,
the dataset also covers WPM widely, with funk, pop, or even EDM songs (see Figure 3.2).
All songs are in the Guitar Pro file format, the specific version can differ (included ver-
sions are .gp3, .gp4, and .gp5) but all can be converted to the token format presented
in Sarmento et al. (2021) using the pyguitarpro Python library6 to use them as input to
RNNs (section 2.3.2). Songsmay containmultiple instrument tracks and are not restricted
to guitars, even though guitar is the most represented instrument (Table 3.1). Other in-
struments are for instance bass guitars, drums, or “lead” and “pad” instruments playing
melodic or ambient lines, respectively. The dataset also includes songs in various guitar
tunings, and songs with 7-string guitars or 5/6-string bass guitars. Finally, while most
songs use a 44 time signature, songs can be partly or entirely in other time signatures like24, 34, or 68, to a greater extent than MSB.

Strengths andWeaknesses. The DadaGP dataset is extremely varied, even with its bias
towards rock and metal songs. Its large size and availability for research (upon request,
no license specified) allows the MIR community to further study guitar tablatures, even
with large DL models. This dataset also comes with a dedicated tokenisation format that
allows using it and studying tablatures even without using the original Guitar Pro files.
Themainweakness of this dataset, compared toMSB, is that the transcriptionsweremade
and shared freely by guitar enthusiasts. Without denying the importance and selflessness

5Obtained from the Spotify Web API, querying by artist and song title. Note that each song can have
multiple style tags, 4 on average in DadaGP.

6https://github.com/Perlence/PyGuitarPro, accessed on April 2025. The library cannot process any Guitar
Pro file in a version newer than 5.

49

https://github.com/Perlence/PyGuitar Pro

Chapter 3. State of the Art

Table 3.1: Number of tracks for each instrument inDadaGP.Note that each file can contain
multiple instrument tracks. Lead is for “instrumentswith sharp attacks, e.g. piano”while
pad is used for “instruments used more ambiently, like a choir or a string ensemble”
(Sarmento et al. 2021).

Instrument Number of Tracks Ratio

Bass 14 941 17%
Drums 14 248 16%

Clean Guitar 16 190 18%
Distorted Guitar 28 003 32%

“Lead” 11 048 13%
Pads 3 358 4%

Total 87 788

of those transcribers, it is worth noting thatmost are not professional transcribers, causing
the quality of the tablatures to vary greatly.

Finally, it is important to acknowledge the impact the DadaGP dataset has had on
MIR research. Many papers built upon the original generative transformer trained on the
dataset and presented in Sarmento et al. (2021) to adapt it to a variety of situations (Ad-
kins et al. 2023; Cui et al. 2024; Loth et al. 2023; Sarmento et al. 2023a; b). In addition, this
dataset also has been used in other MIR subfields like MIDI-to-Tab conversion (Edwards
et al. 2024) or AMT (Cwitkowitz et al. 2022). The dataset was also adopted by the com-
munity, since it has now been used in other works without the original authors (Pedroza
et al. 2024; Zang et al. 2024).

3.1.4 Digital Representations of Tablatures

In subsection 1.1.2, we discussed the different file formats that can be used to store guitar
tablatures. Those files are designed to encode the data for digital notation software, and
sometimes mix information regarding the musical content with display parameters. For
tablatures to be analysed automatically or used for training ML models, specific digital
encodings are required. However, encodings already defined for music using standard
notation cannot be used directly, as they would lose all tablature-specific information,
like where notes are played on the fretboard or when playing techniques are used. For in-
stance, Cournut et al. (2020) introduce different encodings for chords in tablatures like the
relative encodingwhere frets are counted from the first played and not the first on the fret-
board. With that encoding, they show how chords can easily be played as “boxes” trans-
lated around the fretboard. Similarly, ASCII tabs, because they are only lightly structured
text files, also need suitable encodings to be used. Several representations were tested in
Eldby (2021), and a representation where the tab is sent column-by-column turned out
the best for an RNN to process.

Finally, tablatures can also be tokenised to be processed by transformermodels. The two
main tokenisation schemes that currently proved their efficiency for tablature generation

50

3.1. Tablature Data in MIR Research

E|-----------------------------

B|--------------------------6--

G|------------------5----------

D|----------4------------------

A|--5--------------------------

E|-----------------------------

||||||

-5----

--4---

---5--

----6-

||||||

ASCII Representations,

Eldby (2021)

start

new_measure

clean:note:s5:f5

wait:960

clean:note:s4:f4

wait:960

clean:note:s3:f5

wait:960

clean:note:s2:f6

wait:960

end

DadaGP Tokenisation

Sarmento et al. (2021)

bar

Position:1/16 , Velocity: 1, NoteON: 10, Duration: 8, String: 5, Fret: 5

Position:5/16 , Velocity: 1, NoteON: 14, Duration: 8, String: 4, Fret: 4

Position:9/16 , Velocity: 1, NoteON: 20, Duration: 8, String: 3, Fret: 5

Position:13/16, Velocity: 1, NoteON: 26, Duration: 8, String: 2, Fret: 6

bar

REMI-like Tokenisation

Chen et al. (2020)

StringFret : (•, 5, 4, 5, 6, •)

RelativeStringFret : 4 + (•, 1, 0, 1, 2, •)

Pitch : {D3, F#3, C4, F♮4}

Static Encodings

Cournut et al. (2021)

Figure 3.3: One bar of guitar tablature and its possible representations.

are from Y.-H. Chen et al. (2020) and Sarmento et al. (2021). In the former, each note is
represented by an onset value, a duration, and a string-fret pair. In the latter, a note is
a single token that can be preceded or followed by wait tokens that allow to infer the
onsets and durations. Choosing a tokenisation scheme is usually a matter of balancing
its efficiency (number of tokens required to represent a given musical content) and its
robustness (token sequences easily reproducible by amodel and usable evenwithmissing
tokens). An example of all encodings presented in this section is provided Figure 3.3.

3.1.5 Tablatures in Computational Musicology

Guitar scores and tablatures can be used as training data for generative DL models, but
they can also be considered as artefacts of WPM practice and composition in computa-
tional musicology analyses. In Koozin (2011), the author shows how tablatures, because
they can represent gesture, allow for deeper and more meaningful interpretations of gui-
tar practice inWPM. Besides, the author shows how the guitar affordance – only noticeable
in tablature notation – impact composition, a concept also discussed by Yim (2011). Many
researchers also studied the playing styles of famous guitarists through analyses of tran-
scriptions of their solos, with tablature notation. Ferretti (2016), for instance, analyses
solos of Eric Clapton, David Gilmour, Jimi Hendrix, B.B. King, and Eddie VanHalen. Fer-
retti represents the solos as directed graphs and observes that the playing styles of the
guitarists studied have noticeable differences in their network representations. In Das
et al. (2018), the authors study solos of Clapton, Gilmour, Hendrix, and Mark Knopfler
with zero and first-order Markov chains in which they also identify global trends on mu-
sical characteristics that can be linked to playing styles. Likewise, Sarmento et al. (2023b)
analyse solos of Gilmour, Hendrix, Steve Vai, and Yngwie Malmsteen from the DadaGP

51

Chapter 3. State of the Art

dataset and train a classifier that recognises guitar players from tablatures with an accu-
racy of 89%. In particular, they analyse the use of playing techniques by each guitarist and
notice clear style tendencies. For instance, Steve Vai uses tapping techniques more often
than the other guitarists, and Jimi Hendrix often plays on the EZminor pentatonic scale.
Tablatures can also be used to study guitar practice in WPM: since tabs allow to disam-
biguatewhere to play notes and chords on the fretboard, they can be used to observewhat
chord positions are most used by guitar players (Cournut et al. 2021). Tablatures can also
be studied in Optical Music Recognition research, like Ma et al. (2023) who aim at auto-
matically distinguishing tablatures from numbered notation (jiǎnpǔ notation, Yang et al.
(2025)).

52

3.1.
TablatureD

ata
in

M
IR

Research

Table 3.2: Research works on guitar tablatures and the data specifically gathered for them.

Paper Task Data Description Source of Data Format Availability/Reproducibility License

Dahia et al.
2004

Rhythm guitar
accompaniment gen-
eration

21 2-bars rhythmic pat-
terns for Bossa Nova
guitar

Expert knowledge
and literature on
Bossa-Nova analy-
sis

N/A Exact patterns are unknown
and cannot be retrieved with
the information provided.

N/A

D. Tuohy et al.
2006

Arrangement of stan-
dard notation scores
in tablature notation

2movements fromWest-
ern classical music

Official published
scores

Unknown Original publications for the
scores are provided.

N/A

McVicar et al.
2014a; b; 2015

Guitar tablature gen-
eration

50 popular tablatures
of songs from 5 “well-
known guitarists”

www.gprotab.net GuitarPro Song titles available, but the
exact tablature versions are
not.

N/A

Ferretti 2016 Guitar solos mod-
elling and analysis

Tablatures for solos of
“Important Guitarists”
(unknown dataset size)

AZ Guitar Tabs
and Ultimate Gui-
tar

MusicXML Selected solos are unknown. N/A

Ariga et al.
2017a

Tablature arrange-
ment from poly-
phonic audio

Western classical guitar
tablatures (unknown
dataset size)

Classtab Plain text Selected songs are unknown. N/A

Ariga et al.
2017b

Suggest personalised
exercises to practise
chords and songs

727 chord progressions
from the Billboard
dataset (Burgoyne et al.
2011) and possible gui-
tar positions

Billboard dataset
and expert gui-
tarists

Plain text The chord fingerings used to
play the songs are not shared.

CC0
for the
Billboard
dataset.

53

www.gprotab.net
https://www.guitaretab.com/
https://www.ultimate-guitar.com/
https://www.ultimate-guitar.com/
https://www.classtab.org
https://creativecommons.org/public-domain/cc0/

C
hapter

3.
State

ofthe
A
rt

Mistler 2017 Arrange standard no-
tation scores into tab-
latures

100 tablatures of “popu-
lar” songs

Ultimate Guitar Guitar Pro Exact tabs are unknown. N/A

Das et al. 2018 Analyse and classify
rock guitarists from
their solos

20 guitar solos from
Clapton, Gilmour, Hen-
drix and Knopfler, each.

Ultimate Guitar Guitar Pro Song titles are not provided. N/A

Y.-H. Chen et
al. 2020

Generation of finger-
style guitar tablatures

333 fingerstyle guitar
tablatures

Unknown MIDI Song titles are not provided. N/A

Eldby 2021 Generation of West-
ern classical guitar
tablatures

3060 Western classical
guitar tablatures

Classtab Plain text The exact files or song titles
are not provided.

Unspeci-
fied

Ma et al. 2023 Classification of tab-
lature and numbered
notation

1986 tablature images
and 5856 numbered
musical notation images

Unknown Unknown No information provided. N/A

Vélez Vásquez
et al. 2023

Estimation of guitar
chords playing diffi-
culty

200 songs from the Bill-
board dataset (Burgoyne
et al. 2011) with playa-
bility annotations of the
chord sequences

Subset of the Bill-
board Dataset and
expert guitarists

.txt or

.lab

The songs and the annota-
tions are shared on Github,
but chord fingerings are not
provided.

Unspeci-
fied

Riley et al.
2024b

Automatic Music
Transcription of Jazz
guitar songs

4 hours of audio with
professional transcrip-
tions

Francois Leduc
commercial cata-
logue

GuitarPro
for the tabla-
tures, audio
format un-
specified

Full track list is provided. N/A

54

https://www.ultimate-guitar.com
https://www.ultimate-guitar.com
https://www.classtab.org
https://github.com/Marcel-Velez/playability-billboard

3.1.
TablatureD

ata
in

M
IR

Research

Table 3.3: Guitar tablature datasets available for research, top-half contains datasets for Automatic Music Transcription (AMT), while the
bottom-half shows general purpose datasets.

Dataset Data Description Source Format Availability/Reproducibility License

Guitarset (2018) 3 hours of hexaphonic (each guitar string
is recorded individually) recordings of chord
progressions with their corresponding tran-
scriptions (30 excerpts played by six guitarists).

In-house recordings JAMS/WAV
(Humphrey
et al. 2014)

https://zenodo.org/records/

3371780, accessed in April
2025.

MIT

EGDB (2022) 2 hours of hexaphonic recordings of tablatures
of solos, arpeggios, and comping (240 files).

In-house recordings MIDI/WAV https://ss12f32v.github.io/

Guitar-Transcription/, accessed
in April 2025.

Unspecified

GAPS (2024) 14 hours of Western classical guitar recordings
and their corresponding tablatures (300 songs).

ClassClef free scores
and matching Youtube
videos

Mu-
sicXML/au-
dio format
unknown

https://zenodo.org/records/

13962272, accessed in April
2025.

CC BY-NC-SA

DadaGP (2021) 26 181 amateur transcriptions of WPM songs. Unknown GuitarPro Available for research on de-
mand.

Unspecified

mySongBook 2 115 professionally-transcribed guitar tabla-
tures

Arobas Music Com-
pany

GuitarPro Parts or features of the tabs
have been released, but the
full dataset is unavailable.

Unspecified

AnimeTAB
(2022)

412 tablatures of fingerstyle guitar arrange-
ments of anime songs

“open-source scores on
the Internet”

MusicXML https://github.com/amamiya-

yuuko/AnimeTAB, accessed in
April 2025.

CC BY-NC

55

https://zenodo.org/records/3371780
https://zenodo.org/records/3371780
https://ss12f32v.github.io/Guitar-Transcription/
https://ss12f32v.github.io/Guitar-Transcription/
https://zenodo.org/records/13962272
https://zenodo.org/records/13962272
https://github.com/amamiya-yuuko/AnimeTAB
https://github.com/amamiya-yuuko/AnimeTAB

C
hapter

3.
State

ofthe
A
rt

Cunha et al.
2018

342 Blues Licks of 1 or 2 bars duration. Specialised music
books

MusicXML http://dorienherremans.com/

guitar_licks_dataset, accessed
in April 2025

Unspecified

Keating et al.
2024

3 698 voice-leading examples of Jazz chord pro-
gressions and the corresponding guitar finger-
ings

Educational book and
manual transcriptions

CSV files https://github.com/mbkeating/

AIMC, accessed in April 2025
Unspecified

56

http://dorienherremans.com/guitar_licks_dataset
http://dorienherremans.com/guitar_licks_dataset
https://github.com/mbkeating/AIMC
https://github.com/mbkeating/AIMC

3.2. Assisted Guitar Composition and Tablature Generation

3.2 Assisted Guitar Composition and Tablature Generation

The objective of the TABASCO project, pursued in a part of this thesis’s contributions
(part III), is to assist guitar players when they composeWPM. The choice was made to fo-
cus on using tablatures for assisting composition, which includes our work in the broader
field of symbolic music research. In this section, we begin by introducing music genera-
tion as a whole, before focusing on tablatures and how they have been studied in auto-
matic arrangement systems as well as generative models. Finally, we discuss how such
AI models can fit in a musician’s pipeline when performing or composing.

3.2.1 Music Generation in the Audio and Symbolic Domains

Tablature generation is a subfield of symbolic music generation which is itself a subfield
of music generation, a field that can considered at least a few centuries old. For instance,
musical dice games were popular in Western Europe in the 18th century (Nierhaus 2009),
the principle being that a music could be assembled from a numbered list of excerpts by
rolling dice, anyone could then generatemusic “randomly” from the originally composed
options. In general, music generation approaches can belong to three main approaches
(not exclusively). Firstly, some models aim at assisting persons who are not musically
trained in creating music. Musical dice games could be considered to belong to that cat-
egory since they allow to generate new music, without knowing how to compose. Users
still need to know how to read and play music nonetheless, since the result of the game is
a score. More modern approaches that generate full audio, like Jukebox (Dhariwal et al.
2020) from lyrics and style information can also be helpful to laypersons. Recently, com-
mercial models like SUNO7 or Udio,8 or research works like MusicLM (Agostinelli et al.
2023), can generate songs from a simple text prompt, allowing anyone to create music
from their language (unless they are from the global South Choudhury (2023)). Secondly,
some works focus on studying creativity or whether machines can be creative (Colton et
al. 2012). The Dadabots duo for instance, aims at “eliminating humans from music”9

(Windsor 2021) and develop models that generate metal music indefinitely. Chemla–
Romeu-Santos et al. (2022) model and study ways of making a music generation model
more creative by diverging from the training set distribution. In Barenboim et al. (2024),
the authors analyse the latent space of MusicVAE (Roberts et al. 2019) and observe that
some specific latent coefficient correlate with measures related to rhythm and pitch in
music. Likewise, Cádiz et al. (2021) conduct case studies on two models and show that,
through the ability to extrapolate fromwhat is available in the training data, thosemodels
could be considered creative. Finally, some generative music models focus on assisting
artists. This category is often interwoven with the previous one, where models are used
in a co-creative fashion. The co-creativity can be in real-time, like with systems based

7https://suno.com/home, accessed in June 2025.
8https://www.udio.com/, accessed in June 2025.
9https://www.youtube.com/@dadabots_, accessed in June 2025.

57

https://suno.com/home
https://www.udio.com/
https://www.youtube.com/@dadabots_

Chapter 3. State of the Art

on the OMax paradigm (Assayag et al. 2006) such as the DYCI2 agents (Nika et al. 2017).
Artists can also rely upon AI models for ideation, this is for instance how the Algomus
team and Sébastien Gulluni composed a song for the 2021 AI song contest (Déguernel
et al. 2022), an approach followed by most of the contestants of the 2020 edition as well
(C.-Z. A. Huang et al. 2020). More models from all categories can be found in surveys
on generative music (Briot et al. 2019; Herremans et al. 2017; Ji et al. 2023; Le et al. 2024).
Our work belongs primarily to the last category since our objective is to assist guitarists
in composing with tablatures. Because we use such a notation system, our work also be-
longs to the category of symbolic music models. Scores are commonly used as a means
of communication betweenmusicians inWestern music, classical music composers being
used to compose directly with scores (Leech-Wilkinson 2012), while popular musicians
will learn to play songs from their recordings, but also through scores and tablatures (L.
Green 2002). Using models that generate scores is thus a way to assist composers without
affecting their workflow. We pursue this section with a description of common tasks in
symbolic music generation, before discussing tablature generation research.

Tasks in Symbolic Music Generation Symbolic music generation can be tackled in
many ways, a common approach is to implement models that realise arrangements. An
arrangement is defined in the Harvard Music Dictionary (Randel 2003) as:

Definition (Arrangement) The adaptation of a composition for a medium different from that
for which it was originally written, so made that the musical substance remains essentially un-
changed. BOOK-OPEN

A specific type of arrangement is for instance orchestration, i.e. adapting a score (piano
for instance) to an orchestra, and it can be tackled by symbolic generation models (Mac-
carini 2024). Arrangements can also be used to change the difficulty of an existing score,
like Gover et al. (2022) that propose a model to automatically simplify a piano score for
beginners. Arrangement is a specific type of conditional generation, where conditioning
data can be anything that drives the model towards a desired output (Briot et al. 2019).
The conditioning can for example be a prompt that needs to be continued, the Music
Transformer (C.-Z. A. Huang et al. 2019) can for instance generate continuations of piano
MIDI files whilemaintaining consistency and beingmore varied than the vanilla transfor-
mer, thanks to a relative attention mechanism (see chapter 9 for more explanations of this
mechanism). Conditioning values can also be used to inform the model on desired char-
acteristics for the generated output. Ens et al. (2020) present a model that can generate
MIDI files with precise controls over the instruments present, as well as note density, S.-L.
Wu et al. (2023) even allow rhythm and polyphony controls to be time-varying. Another
conditional generation approach often studied to assist composers is inpainting (term de-
rived from image generation research)which consists in generatingmusical content based
on past and future context (K. Chen et al. 2020; Hadjeres et al. 2021). A derived approach

58

3.2. Assisted Guitar Composition and Tablature Generation

Section to generate

Inpainting/Overpainting

Unconditional

Conditional Generation

Fm9 | Em9 | Bø Em7

Lead Sheet

Score in Standard Notation

Chord Sequence

Arrangement

« Two Guitar Tracks, one rhythmic the
other melodic. The chords are played

with jazz voicings and the melody
should be singable »

Text/Conditioning Features

One Instrument Track

Generated content

Figure 3.4: Summary of the different generation types for symbolic music. Only a few
selected examples are given for the conditional generation but the conditioning could be
in almost any shape or form.

is overpainting (Row et al. 2023), which complements inpainting with the constraint of
keeping the original content recognisable within the newly generated one.

Conversely to conditional generation, generation can be unconditional or free. In that
situation there is little to no control on what the model generates. Many models will
support both free and conditional generation by design. For instance, transformer-based
models can generate either the continuation of a prompt, or generate an entire sequence
freely, as illustrated by the Pop Music Transformer (Y.-S. Huang et al. 2020).

The presented tasks are summarised Figure 3.4, amore extensive presentation of sym-
bolic music generation models can be found in Ji et al. (2023) and Le et al. (2024).

3.2.2 Tablatures in Symbolic Music Generation

We previously introduced symbolic music generation and the different tasks it encom-
passes. Tablature, as a specific type of symbolic notation, can also be generated in many
different ways. Generating tablatures is specific in theway it can include complex playing
techniques, and the string-fret positions generated are expected to be playable. Dahia et
al. (2004) presents a rule-based and case-based reasoning method for choosing rhythmic
bossa nova guitar patterns. As is often the case, rules are obtained from domain experts
and allow to automatically filter patterns from a selected database. A :-nearest neigh-
bours algorithm is then applied for case-based reasoning, selecting the best match on a
set of musical features. Guitar tabs can also be generated using integer programming.

59

Chapter 3. State of the Art

Cunha et al. (2018) present a method for generating blues guitar solos, by defining tran-
sition costs and classifying existing licks before finding an optimal path between them.
Machine learning methods can also be used, like in McVicar et al. (2014a), b, 2015. In
those papers, the authors use a variety of data-driven methods to generate guitar tabla-
tures. Notes and their position on the fretboard are sampled from a training set, using =-
gram modelling and a random-walk to obtain the final tablatures. InMcVicar et al. (2014a),
the random walk generation using those =-grams is improved by adding an additional
component in the probability computation that favours chord tones, to ensure that the
solos generated match the underlying chord progression. Fretting-hand techniques are
also added in a post-processing step to make the final tablature more idiomatic.

Other tablature generation models are based on the Transformer-XL model intro-
duced in Dai et al. (2019) and applied to music in Y.-S. Huang et al. (2020). Compared
to a vanilla transformer, the Transformer-XL model uses a recurrence mechanism which
consists in splitting the input sequence into segments, and the latent value obtained from
processing a segment is reused when processing the next segment. This modification al-
lows to maintain consistency over longer token sequences. The model also uses relative
positional encoding, which informs the model of the relative distances between each to-
ken, instead of their position in the sequence, ensuring better consistency between tokens.
This network is for example used in Y.-H. Chen et al. (2020) to generate fingerstyle gui-
tar tablatures. They implement “groove” controls that inform the model on the expected
rhythmic density when generating tablatures. The Transformer-XL is also themodel used
in Sarmento et al. (2021) and all papers that built upon the DadaGP model and dataset
(Loth et al. 2023; Sarmento et al. 2023a; b). In the original DadaGP paper, Sarmento et al.
prove that the model can be trained on the DadaGP dataset to generate realistic guitar
tablatures, as well as other instrument tracks. In Sarmento et al. (2023a), they experiment
with different prompting strategies to assess the controllability of the Transformer-XL
model, and in particular control which instruments should be included in the generation.
Because those controls did not successfully remove unwanted instruments, in Loth et al.
(2023) and Sarmento et al. (2023b), they retrain the model on progressive metal tablatures
or tablatures of famous guitarists, to generate new tablatures similar to their training set.
Playing techniques are usually included in those models’ generations, either focusing on
specific techniques like for fingerstyle guitar (Y.-H. Chen et al. 2020), or techniques com-
mon toWPMguitar playing (Sarmento et al. 2021). Because those techniques are included
in the tokens used by those models, they are generated automatically and do not need to
be added in a post-processing step.

3.2.3 Automatic Tablature Arrangement

Tablature, like other kind ofmusical notation, can be the objective of arrangementmodels.
Most research focuses on converting a score in standard notation (or a MIDI file) into a
playable tablature, but there are also studies on arranging a tablature from one style to

60

3.2. Assisted Guitar Composition and Tablature Generation

another.
Arrangement of existing Western classical music scores to playable guitar tablatures

was studied in D. Tuohy et al. (2006), 2005 using genetic algorithms (Eiben et al. 2010). In
such algorithms, a population of individuals – here, valid tablatures – is evaluated by a
fitness function – a measure of the tablature’s playability – until a satisfactory score is at-
tained. Individuals are used to create a new generation by optionally mixing genes – parts
of the tablature – and possibly undergoing a mutation – randomly changing the fingering of a
chord. A similar optimisation-based approach is used in Sakai et al. (2024) where, given a
lead-sheet and a set of chords, a fingerstyle guitar arrangement in tablature format is gen-
erated. Required values for initial and transition probabilities are defined through expert
knowledge. Conversely, Mistler (2017) uses a DL-based approach. Mistler trains an LSTM
network to obtain a possible tablature from a new unseen score in standard notation, but
all musical constraints are learned from existing data. Using a tablature as input, Zhuang
(2023) adapts the CycleGAN (Zhu et al. 2017) architecture from image processing tomusic
for converting classical guitar tabs to Blues tabs. In Kaliakatsos-Papakostas et al. (2022),
the authors propose to use a Convolutional Neural Network to arrange a MIDI file into
a guitar tablature. To do so, they process time-frames sequentially and use previously
generated tablature frames as additional input to improve the playability of the gener-
ated tablatures. Other advanced DL architectures fromNLP can be used, like in Edwards
et al. (2024) where a BERTmodel is used to automatically find a possible tablature to play
a MIDI file. Finally, arrangement systems can even generate playable tablatures directly
from audio, as studied in Ariga et al. (2017a). Though related to AMT, the difference with
this approach is that the original audio is not necessarily a guitar recording.

3.2.4 Tablature Generation Models for Co-Creativity

We discussed in section 1.2.2 that tablatures are usually not at the heart of the composi-
tion process. Could new AI methods change that fact? The previous section introduced
researchworks that generates guitar tablatures in various fashions, but most systems pro-
pose free generation, i.e. generating content with little to no control for the user. Even
models with more control usually generate full songs and authors do not discuss how
their tool would fit in a musician’s workflow. In those situations, songs are artefacts that
are generated or used for training, and how those models could be used for co-creation is
little discussed (Jordanous 2016). A few exceptions exist and explicitly present tablature
generation as a co-creativity task. Adkins et al. (2023), for instance, aims at generating
loopable content for live coding performances. While the proposed model was not tested
in live contexts, generated loops were evaluated on their internal consistency and loop
seamlessness through an online survey, and the generated loops were rated fairly close
to human-composed ones. The approach is further extended in Cui et al. (2024) where
the authors try adding emotion control to the generated loops. Even though the user study
does not strongly support the efficiency of this control – attributing emotions to music

61

Chapter 3. State of the Art

is dependent on context and personal experience (Schubert 2013) – its addition shows
a desire to get closer to the way musicians can imagine compositions (Déguernel et al.
2023).

Another interesting example is how Loth et al. (2023) used the DadaGP dataset and
the corresponding transformer model to compose a progressive metal song from scratch.
The model generated suggestions in tablature format, that were selected, practised on
guitar, and recorded by the authors to obtain a fully produced progressive metal song.
In Loth et al. (2023), they detail the process of making the model and song and reflect
upon this interaction with an AI model. For instance, they observe that the model can
successfully maintain consistency throughout the song, by repeating an early riff at the
end of a new section. However, some parts of the generated tablatures were too hard to
play as is (even by seasoned guitarists) and had to be adapted to be playable. Finally, it
is also worth noting that the authors used the same approach to record two fully-fledged
songs for the AI song contest in 2023 and 2024.10

3.3 Computer Assisted Guitar Education

A part of this thesis focuses on assisting guitarists in their learning process. The corre-
sponding contributions are discussed in part II, and this section presents existing work
in computer assisted guitar education. MIR research on guitar education includes two
main fields, score performance difficulty estimation and song recommendation for learn-
ing. Both fields are driven by the amount of guitar educational content that can be found
online, as estimating the difficulty of a song or recommending appropriate tablatures can
help students navigate those resources (Figure 3.5).

3.3.1 Music Difficulty Estimation

Difficulty is a subjective aspect in essence, as what students find difficult in a song will
depend on their background and past experience. Regardless of that subjectivity, music
teachers aim at recommending content that favour a smooth and rewarding learning pro-
cess (McQueen et al. 2018; Nielsen et al. 2023). Difficulty estimation tools could facilitate
this recommendation process by automatically processing large song catalogues, and be
useful to both teachers and self-taught learners. This task has been little studied in the
MIR community, maybe partly because of a lack of appropriate datasets, especially for
instruments other than piano.

The earliestworkmight be Sébastien et al. (2012), inwhich the authors introduce seven
criteria, like playing speed or hand displacement, to automatically evaluate the difficulty
of piano scores. Themethods attains over 50% agreement with three piano teachers when
rating songs “representative of a classical piano cursus in a French music conservatory”,

10https://www.aisongcontest.com/participants-2023/hel9000 (2023), https://www.aisongcontest.com/
participants-2024/hel9000 (2024). Links accessed in April 2025.

62

https://www.aisongcontest.com/participants-2023/hel9000
https://www.aisongcontest.com/participants-2024/hel9000
https://www.aisongcontest.com/participants-2024/hel9000

3.3. Computer Assisted Guitar Education

Figure 3.5: Screenshots of three websites with guitar-related resources. From left to right:
JustinGuitar (Educational website with 7 complete courses and over 700 song tutorials),
Ultimate Guitar (over 2 million tabs), and Songsterr (over a million tabs).

on a difficulty scale with three levels. A similar study is done in Chiu et al. (2012) with a
partly different set of eight features on a dataset of over 300 MIDI files from online piano
catalogues.11 The final regression model reaches a coefficient of determination '2 ' .4.
In Ramoneda et al. (2022), 2024a, the authors introduce two new datasets for piano dif-
ficulty estimation: Béla Bartók’s Mikrokosmos, and difficulty-classified scores of Henle’s
catalogue.12 Ramoneda et al. (2022) present a DeepGRU model that attain over 60% ac-
curacy when classifying scores in three difficulty levels. In Ramoneda et al. (2024a), the
balanced accuracy of the model drops to 39.5% on the new dataset, but the classification
is now between 9 difficulty levels. Ramoneda et al. (2023) further show that their deep
learning based approach can also work directly from score images, reaching 40.3 % bal-
anced accuracy with a new GPT-based model trained and evaluated on multiple piano
datasets combined.

When it comes to guitar, difficulty can be taken into account during tablature genera-
tion. Ariga et al. (2017a) defines an arrangement model that generates a tablature from an
audio recording, with explicit difficulty controls that control movement speed and chord
fingering complexity. In Vélez Vásquez et al. (2023), the authors focus on analysing the
difficulty of playing chords in accompaniment guitar tracks. To do so, they interviewed

11https://www.pianostreet.com/ and https://www.8notes.com/, accessed in June 2025.
12https://www.henle.de/en/, accessed in June 2025.

63

https://www.pianostreet.com/
https://www.8notes.com/
https://www.henle.de/en/

Chapter 3. State of the Art

guitar teachers and built a rubric of criteria for rating the difficulty of guitar accompani-
ment songs. Criteria like chord fingering difficulty or strumming complexity13 are then used
to train different AI models to reproduce ratings produced by experts on a public dataset
of WPM songs. Apart from this last work, we could not find additional research on diffi-
culty estimation for guitar in WPM, highlighting a gap in the state-of-the-art.

3.3.2 Games and AI-Models for Learning and Teaching Guitar

Assisted guitar pedagogy research in the literature focuses either on recommending learn-
ers with songs, or helping beginners in their practice. Song recommendation is a vast re-
search field in itself. Common approaches include collaborative filtering, where similar
users are grouped together, or content-based filtering based onmanually defined features
or automatic representations extracted by DL models (Paul et al. 2020; Zeng et al. 2024).
However, recommending songs to learners (instead of listeners) require taking specific
musical aspects into account, like the difficulty of the songs or the techniques they in-
volve for instance. Because new skills need to be learned gradually, recommending songs
to learners is more of a digital pedagogy task than a typical music recommendation one.
Indeed, learning specific chords or playing techniques can be prerequisites to some songs,
and the learning order can therefore not be random. Ideas can be drawn from research
on e-learning for instance (Hafsa et al. 2022), but they will not be discussed further in this
thesis. Approaches like collaborative filtering can still be applied for recommending new
songs to learn, but they require access to large amounts of students data that are hard
to come by, except for large music learning platforms like Yousician14 (Müllerschön et al.
2025).

Directly recommendings songs is however not the onlyway to assist guitarists in learn-
ing and practising their instrument. For instance, because of the large quantity of tabla-
tures available online, any algorithm helping to navigate the vast amount of data can be
useful. This is studied in Macrae et al. (2011), where the authors propose a way to au-
tomatically mine tablatures on the Internet and assess their quality to provide learners
with appropriate resources for learning a desired song. A similar system is studied in
Barthet et al. (2011), where video tutorials are selected from YouTube with their matching
chord sequence and tablature. B. Wang et al. (2021) proposes a comparable tool, where
existing educational videos are augmented with sound processing tools to check that the
user plays the song correctly, similarly to what can be seen is commercial applications like
Yousician (Yue et al. 2025).

Another way to help beginner guitarists is to accompany them in learning their first
chords. This is precisely the goal of Ariga et al. (2017b) that proposes a complete software
to guide beginners learning guitar chords while also suggesting songs that will put the

13Criteria called “right-hand complexity” in the original paper, renamed to account for left-handed gui-
tarists.

14https://yousician.com/, accessed in November 2025.

64

https://yousician.com/

3.3. Computer Assisted Guitar Education

most common chords in context. Focusing on a similar task,Wortman et al. (2021) dynam-
ically find chord fingerings based on a variety of constraints, including maximum finger
stretches, to adapt to any guitar player. Another music performance assistance tool is
studied in Keating et al. (2024), that introduces a method to suggest chord fingerings that
comply with voice-leading constraints for playing jazz songs. While not tested in actual
performance and learning contexts, the authors assessed the validity of the suggestions
and observed that it might indeed be a good starting point for beginners.

Video games can also help learning music. While playing Guitar Hero is very different
from actual guitar playing (Arsenault 2008), Rocksmith is played with an actual electric
guitar or bass plugged to the computer or console. Interfaces of both games along with
the Guitar Hero controller are shown Figure 3.6. With such a game, players can really
learn to play guitar or might be motivated to practice by the fun nature of the task, as
compared to taking lessons (Havre et al. 2019). Games can also create communities on a
variety of platforms, which has an impact on users engagement and improved learners
investment in Rocksmith (Rodriguez et al. 2020). Other serious games were developed to
help learning guitar: Skreinig et al. (2022), 2023 use Augmented Reality to help guitar
players visualise chord shapes on the fretboard, thus helping beginners remembering
how to play the chords they learned.

65

Chapter 3. State of the Art

Figure 3.6: Top: The Guitar Hero game interface (screenshot taken from Arsenault 2008)
and the Guitar Hero controller (picture from ICGAMES); Bottom: The Rocksmith game
interface (screenshot by firefang9212). In Guitar Hero, each column has coloured dots
falling down that corresponds to one of the five buttons on the guitar controller, the player
then have to synchronously tap on the “pick” with their other hand. In Rocksmith, the
display resembles a tablature thatwould have beenflippedupside down (the lowest string
is on top), each string is colour-coded.

66

https://www.mobygames.com/game/57978/rocksmith/promo/group-11507/image-130448/

Part II

Assisted Guitar Pedagogy through
Automated Difficulty Estimation

67

4

Difficulty Adjusted Guitar Song Suggestion

“I couldn’t play normally […] so I just started tapping because I couldn’t do anything
else well enough to get through the things I wanted to learn.”

Sarah Longfield, in Larson (2018)

Contents
4.1 What makes learning new songs difficult? 70
4.2 Difficulty-Annotated Corpus . 75
4.3 A Model for Personalised Suggestion . 76
4.4 Evaluation . 80
4.5 Discussions and Conclusion . 82

Guitar learners have access to millions of tablatures or songbooks online, but have no
direct way of knowing what their current level allows them to practise without facing
discouraging difficulty. In this chapter, we present our research on recommending guitar
learners with new songs to practise, based on their current level. To do so, we propose a
simple algorithmic approach to estimate the level of learners on different musical dimen-
sions like rhythmpatterns and chord complexity, and suggest songswith similar difficulty
levels. This work was made in collaboration with the Guitar Social Club (GSC) start-up1

on their proprietary dataset of WPM accompaniment guitar songs, rated on several diffi-
culty criteria by our partnering guitar teacher. The research presented in this chapter has
been published in the following papers:

“Suggestions Pédagogiques Personnalisées pour la Guitare”
Alexandre D’Hooge, Mathieu Giraud, Yohann Abbou, Gilles Guillemain.
Actes des Journées d’Informatique Musicale (JIM), 2024. (D’Hooge et al. 2024b)

“What Song Now? Personalized Rhythm Guitar Learning in Western Popular Music”
Zakaria Hassein-Bey, Yohann Abbou, Alexandre D’Hooge, Mathieu Giraud, Gilles

Guillemain, Aurélien Jeanneau.
Proc. of the 26th Int. Society for Music Information Retrieval Conf. (ISMIR), 2025.

(Hassein-Bey et al. 2025)
1https://guitarsocialclub.com/, accessed in June 2025.

69

https://guitarsocialclub.com/

Chapter 4. Difficulty Adjusted Guitar Song Suggestion

4.1 What makes learning new songs difficult?

Students will find new songs difficult to learn for different reasons, depending on their
past experience. In this section, we propose a formulation of difficulty for accompaniment
guitar parts, based on the experience of a collaborating WPM guitar teacher. We also
present a way of sub-dividing songs, to imitate how guitar teachers might adapt their
lessons to their students.

4.1.1 Difficulty Criteria and Exercises

The skill level of a learner is not well-defined when using a single value. A guitarist may,
for instance, knowmany chords including complex ones, but struggle with using them in
context with advanced rhythmic patterns. Conversely, another guitarist may only know
basic chords but switch between them effortlessly, even while playing complex rhythms.
Vélez Vásquez et al. (2023) acknowledge those possibilities by identifying several diffi-
culty criteria: the intrinsic complexity of a chord based on its fingering, the rarity of a
chord, how the chord is strummed and, within a chord sequence, the repetitiveness and
speed of chord transitions. They obtained those criteria through discussions with guitar
teachers and “expert guitarists”, and used them in a later step to annotate a subset of the
Billboard dataset (Burgoyne et al. 2011).

The criteria we propose in this chapter are also based on discussions with a guitar
teacher but even thoughmany criteria are similar, some differences arose, especiallywhen
it comes to the relative importance of each aspect. It is also worth noting that our work
focuses on recommending appropriate songs to learners, while Vélez Vásquez et al. (2023)
study the playability of guitar songs regardless of a learner’s level. In the rest of this
section, we present those criteria as they are defined and used by our partnering guitar
teacher to annotate the difficulty of the corpus used in this chapter.

Chord Complexity (Table 4.1a) The difficulty of playing chords can be estimated using
several indicators: the number of fingers required, the fret span, the use of open or muted
strings, and the overall hand positioning. Besides, transitioning from chords can also be
complex depending on which fingers are used in each chord. All those aspects are taken
into account by the guitar teacher when rating chord complexity ℓ2 . Example of typical
chords expected in each level are shared Table 4.1a.

Playing Speed (Table 4.1b) Considering tempo, the amount of Beats Per Minute (BPM)
alone is not sufficient to characterise tempo complexity. For instance, a song at 70 Beats
PerMinute (BPM)where the guitarist primarily plays sixteenth notes can present a similar
level of rhythmic challenge as a song at 140 BPM with mostly eighth notes. In both cases,
the effective playing rate is comparable, even if the perceived speed is different for the
player and the listener (Elowsson et al. 2013). To better capture this aspect, we consider
the number of Notes Per Minute (NPM). In the previously mentioned examples, both

70

4.1. What makes learning new songs difficult?

would result in approximately 280 NPM. The number of NPM is converted to a grade ℓ)
using the boundaries defined Table 4.1b.

RhythmDifficulty (Table 4.1c) Rhythmic patterns also play a significant role in determin-
ing difficulty, in particular their regularity. Interestingly, rhythmic patternswere assigned
a weight of 0 in Vélez Vásquez et al. (2023) for difficulty estimation. While they state that
rhythmic difficulty contributed little extra information and could be overlooked, we be-
lieve it can be due to a bias of their dataset. For this reason, we include a rhythm difficulty
criterion ℓ' to ensure the robustness of our approach, and patterns are rated according to
the categories defined Table 4.1c.

Global Rating (Table 4.1d) In addition to the previous criteria, each song is rated as a
whole to reflect the overall difficulty as perceived by the guitar teacher, especially when
multiple criteria interact (Table 4.1d). This global rating ℓ� summarisesmultiple difficulty
dimensions, something that could not be formalised simply with the criteria presented
before. Adding explicit criteria that could replace this global difficulty rating is an area
of improvement considered for future work.

Amount of Exercises When working with a teacher, students are often given specific
exercises to target challenging aspects of a song. For instance, one should probably start by
learning the chords used in the song and practise transitioning from one to the next. If the
song uses a peculiar rhythm, it might also require dedicated exercises to gradually reach
the desired complexity. As a result, the difficulty of learning a new song also depends on
the number and complexity of new exercises it introduces, beyond those the student has
already mastered. The amount of exercises to learn is denoted by ℓ� and exercises used
in the corpus are presented in section 4.2. For our recommendation system, we assume
that an exercise is either known or not, as a binary value. We acknowledge the limitations
of this approach and consider implementing automatic evaluation systems in the future
(Eremenko et al. 2020) to verify to what extent the exercises are mastered. Currently, an
exercise can be declared as cleared by a student, and we trust that they would change
their declaration if they realise that they still need to practise the exercise more.

Additional Criteria Finally, other discrete criteria can be implemented, for example to
favour songs within a given style or within user preferences. Such criteria can be defined
simply as:

�:(6, E) =
{

0 when the criteria is met,
1 otherwise.

71

Chapter 4. Difficulty Adjusted Guitar Song Suggestion

Table 4.1: Criteria for assessing song/part/version difficulty in guitar playing. From top
to bottom and from left to right: (a) Chords. (b) Notes Per Minute (NPM). (c) Rhythmic
Patterns. (d) Global difficulty. Learning times may vary considerably among students.

(a)
ℓ� Chord complexity Chord examples

0-2 Basic open chords, simple voicings, few fingers Em, E, Am, A7sus4
3-4 Open chords, light inversions, more open positions C, D7, Gsus4, Fadd9
5-6 Common barre chords, moderate stretches F, Dmin7, G9, Bbadd6
7-8 More barre positions, less intuitive grips EM9, F#m, C#m/G#, Eb
9-10 Advanced voicings, large stretches, full fretboard usage Fm7, Abm, C#/G, Esus4/B

(b)
ℓ) Tempo Complexity

0-2 Slow (60-200 NPM)
3-4 Medium (200-400)
5-6 Fast (400-600)
7-8 High-speed (600-800)
9-10 Extreme (>800)

(c)
ℓ' Rhythmic Patterns

0-2 Mostly half and quarter notes
3-4 Mostly eights, some sixteenths
5-6 Sixteenths with regular patterns
7-8 16th with irregular patterns, polyrhythms
9-10 Elaborated polyrhythms, odd-time signatures

(d)
ℓ� Typical time Global Difficulty

0-2 T0 Absolute beginner: basic open chords, simple strumming, slow tempo
3-4 T0 + 6 m. Beginner: basic open chords, simple strumming, slow tempo
5-6 T0 + 3 y. Intermediate: barre chords, basic rhythm variations, moderate tempo
7-8 T0 + 5 y. Confirmed: complex transitions, intricate rhythms, faster playability
9-10 T0 + 8 y. Advanced: mastery of multiple styles, technical proficiency

4.1.2 Songs, Parts, and Versions

Even with several criteria, considering the difficulty of a song as a fixed set of measures is
not realistic, because difficulty is not uniform throughout a piece. To address this issue,
we propose splitting songs into their parts, such as Intro, Verse, Chorus, Bridge, or Outro.
The segmentation of a song into parts is both musical and technical: since parts are often
homogeneous from a guitaristic perspective, it is possible to uniformly rate their difficulty
and pedagogical interest for a given person. R.E.M.’s Losing my Religion, for example,
has a Bridge that is more technical and challenging than the song’s verses because of
the fast-paced chord changes (Table 4.2). Indeed, the Verse is mostly composed of the
simple sequence of chordsAminor-Eminor, making it accessible to a guitar beginner. The
Bridge, however, contains the chords G, F, Dminor, and Aminor, and transitions between
them. The F chord is particularly complex for beginners because it has to be playedwith a
barré. This technique requires pressing downmultiple stringswith a single finger (usually
the index) and is notoriously difficult to beginners.2 However, what does it truly mean to
“play Losing my Religion”? Some advanced players may aim to master the full tablature as
performed by the band, while for other guitarists, strumming the chords of the verse with

2https://www.youtube.com/shorts/2MhIUwz2-S8, accessed in June 2025.

72

https://www.youtube.com/shorts/2MhIUwz2-S8

4.1. What makes learning new songs difficult?

(a) Version (d): simplified rhythm (SR).

(b) Version (e): original rhythm (OR).

Figure 4.1: Chords and rhythm patterns for Knocking on Heaven’s Doors in versions d (top)
and e (bottom). Screenshots from the GSC application.

a simplified rhythm to be able to sing along can already be a meaningful achievement.
With that observation, we propose that parts of a song could have multiple versions, each
with possible simplifications that reflect different ways of playing the original part. This
idea aims at reproducing the way a guitar teacher might prepare an easier arrangement
of a song for their student to practise at their current level. As illustrated Table 4.2 for
Knocking on Heaven’s Doors, we define 5 different possible versions. Versions a/b/c are
introductory arrangements where the chords are played on whole, half or quarter notes
respectively. Version d is close to the original song but features a Simplified Rhythm (SR),
defined by the guitar teacher to reduce the complexity of the most challenging patterns.
Version e presents the Original Rhythm (OR), exactly reproducing the version performed
by the original band. Example of those last two versions are presented Figure 4.1.

To summarise, we consider songs, that are split into parts, and each part can exist in
multiple versions. Different versions of the same part can have a modified and simplified
rhythm, but also other changes like different chord fingerings. One can see from Table 4.2
that not all songs exist in all 5 possible versions. The first reason for that is purely practical:
each version of a part of a song is equivalent to multiple videos in the GSC app, and
recording all possible videos was too time-consuming. Given this limitation, songs that
are most likely to be played by beginners (based on the teacher’s experience) exist in all
versions. However, complex songs like Metallica’s Fade to Black would be hard to simplify

73

Chapter 4. Difficulty Adjusted Guitar Song Suggestion

and are reserved to more advanced players. The Intro part, for instance, is based on fast
arpeggios that would be hard to simplify in a meaningful way (i.e. the song might no
longer be recognisable).

Table 4.2: Ratings for selected versions and parts from three songs. Versions are possible
simplifications of a part, the original version being (e) (Original Rhythm, OR), down to
(a) where all chords are played with whole notes. This is specified for instance by “�/72”
which means that this version is played with whole notes (�) at 72 BPM.

1. Knocking on Heaven’s Door (Bob Dylan, 1973)
Version a Version b Version c

ℓ� ℓ' ℓ) ℓ� ℓ� ℓ' ℓ) ℓ� ℓ� ℓ' ℓ) ℓ�

Intro/Chorus 1.1.a � / 120 1 0 0 0 1.1.b , / 90 1 1 1 0 1.1.c C / 120 1 1 1 1
Verse 2.2.a � / 120 3 0 0 1 2.2.b , / 120 3 1 1 2 2.2.c C / 120 3 1 1 2
Full Song 1.a � / 72 3 0 0 1 1.b , / 72 3 1 1 2 1.c C / 72 3 1 1 2

1. Knocking on Heaven’s Door (Bob Dylan, 1973) (Continued)
Version d (SR) Version e (OR)

ℓ� ℓ' ℓ) ℓ� ℓ� ℓ' ℓ) ℓ�

Intro / Chorus 1.1.d
�
� / 72 1 2 2 1 1.1.e

�
� / 72 1 2 2 1

Verse 1.2.d
�
� / 72 3 2 2 2 1.2.e

�
� / 72 3 2 2 3

Full Song 1.d
�
� / 72 3 2 2 2 1.e

�
� / 72 3 2 2 3

65. Losing my Religion (R.E.M., 1991)
Version c Version d (SR) Version e (OR)

ℓ� ℓ' ℓ) ℓ� ℓ� ℓ' ℓ) ℓ� ℓ� ℓ' ℓ) ℓ�

Intro/Chorus 65.1.c C/ 120 4 1 1 3 65.1.d
�
� / 90 4 2 3 3 65.1.e

�
� / 125 4 2 4 4

Verse 65.2.c C/ 120 2 1 1 2 65.2.d
�
� / 90 2 2 3 2 65.2.e

�
� / 125 4 2 1 2

Bridge 65.3.c C/ 120 4 1 1 2 65.3.d
�
� / 90 4 2 1 2 65.3.e

�
� / 125 4 2 1 2

Full Song 65.c C/ 125 4 1 1 3 65.d
�
� / 125 4 2 3 3 65.e

�
� / 125 4 2 4 4

55. Fade To Black (Metallica, 1984)
Version e (OR)

ℓ� ℓ' ℓ) ℓ�

Intro 55.1.e
�
� / 58 2 3 3 4

Bridge 0 55.2.e
�
� / 90 9 3 3 8

Verse 55.3.e C/ 120 3 3 3 5
Chorus 55.4.e

©
� / 58 3 3 6 6

Bridge 1 55.5.e
©
� / 58 3 3 7 7

Bridge 2 55.6.e
©
� / 58 3 3 7 6

Outro 55.7.e SR / 58 4 4 5 5
Full Song 55.e OR / 58 9 4 7 8

74

4.2. Difficulty-Annotated Corpus

Ro
ck Po
p

Ra
dio

Fu
nk

/
So

ul/
R&

B Wo
rld

 M
us

ic

0

10

20

30

40

50

60

Nu
m

be
r o

f S
on

gs

(a)

1 2 3 4 5 6 7
Number of Parts

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f S
on

gs

Average: 3.26
Median: 3

(b)

1 2 3 4 5
Number of Versions

0

50

100

150

200

250

300

Nu
m

be
r o

f P
ar

ts

Average: 1.92
Median: 1

(c)

Figure 4.2: From left to right: Number of songs per styles; distribution of the number of
parts per songs; distribution of the number of versions per songs.

4.2 Difficulty-Annotated Corpus

The corpus, assembled for the GSC application, contains 195 songs. These songs come
from the WPM guitar accompaniment repertoire, with the list curated based on the ex-
perience of our collaborating guitar teacher, who selected pieces frequently requested by
students of various ages, genders, andmusical preferences. The songs are categorised into
five musical styles (Figure 4.2a): Rock (32%), Pop (29%), Funk/Soul/R&B (10%), World
Music (9%), and Radio (20%).3 Expanding the corpus and increasing the representation
of under-represented styles is an area for future improvement. The songs contain between
1 and 7 parts, with most having 2 to 4, totalling 514 parts (Figure 4.2b). The parts have in
average 1.9 versions, totalling 989 versions (Figure 4.2c). Finally, in the commercial appli-
cation, the corpus includes 3248 exercises accompanied by dedicated videos. These exer-
cises focus on practising chord transitions at varying speeds. Each exercise was manually
linked to specific versions/parts/songs of the dataset. In the GSC app, each part’s version
corresponds tomultiple practice videos and each video is accompanied by a simplemusic
sheet reminding the chord fingerings and the rhythm for strumming (Figure 4.1). Those
elements are proprietary, as well as the difficulty-annotated songs, but a subset of the
annotations is released under an OdBL license4 to foster research in difficulty-informed
song recommendation.

The difficulty annotations were manually realised by our collaborating guitar teacher
and are checked against Table 4.1 to limit inconsistencies. Table 4.2 shows the ratings
assigned by the guitar teacher for three songs of increasing difficulty, and Figure 4.3 the
distribution of ratings in the corpus for all versions a, b, c, d, e. Except for rhythm-related
criteria, where moderate and slow values predominate, the distribution of the ratings is
mostly centred around intermediate values. This observation suggests that the corpus is

3Radiomusic includes artists or songs that do not clearly belong in other styles but still are popularmusic
of some sort. Examples of “Radio” songs are Yellow by Coldplay, or Englishman in New York by Sting.

4Data available at https://gitlab.com/algomus.fr/guitor/, accessed in June 2025.

75

https://gitlab.com/algomus.fr/guitor/

Chapter 4. Difficulty Adjusted Guitar Song Suggestion

0 2 4 6 8 10
Chords

0

50

100

150

200

250

Ve
rs

io
ns

a
b
c
d
e

0 2 4 6 8 10
Rhythmic Patterns

0

100

200

300

400

500

Ve
rs

io
ns

a
b
c
d
e

0 2 4 6 8 10
Tempo+Rythm

0

50

100

150

200

250

300

350

Ve
rs

io
ns

a
b
c
d
e

0 2 4 6 8 10
Global

0

50

100

150

200

250
Ve

rs
io

ns
a
b
c
d
e

Figure 4.3: Distribution of the 989 versions among the four dimensions. Versions range
from a (easiest, chords played with whole notes) to e (most difficult, original rhythm of
the part).

well distributed across levels and could likely benefit guitarists of all levels. As expected
as well, more complex versions (d, e) are often rated with high difficulty levels, while a
versions are rarely rated over 3 out of 10.

4.3 A Model for Personalised Suggestion

Now that we have introduced our data and the difficulty annotations, we formalise the
song recommendationmethodwe implemented. Each song is attributed levels on the cri-
teria described in section 4.1. Likewise, each learner is attributed levels on the same crite-
ria, based on the songs they already practised. It is then possible to compare the level of
a learner with the ratings of a part’s version, to estimate the learning difficulty and there-
fore make appropriate recommendations. Ultimately, the model does not recommend a
single song but rather provides the user with several options of varying difficulty to give
them agency in their musical practice.

76

4.3. A Model for Personalised Suggestion

4.3.1 Definitions

We assume that we have sets of (songs S, % parts P , + versions V , and � exercises ℰ.
Each version E is linked to one part ?, and each part ? is linked to one song B. Each version
E is also linked to a set of exercises �(E) ⊂ ℰ.

S = {B1 , B2 , ..., B(}, (4.1)

P = {?1 , ?2 , ..., ?%}, (4.2)

V = {E1 , E2 , ..., E+}, (4.3)

ℰ = {41 , 42 , ..., 4�}. (4.4)

Let us consider that a guitarist 6 already learned a subset V6 ⊂ V of parts’ versions
available in the corpus. We assume that it implies they already master the corresponding
exercises:

©­«ℰ6 =

⋃
E∈V6

�(E)ª®¬ ⊂ ℰ. (4.5)

Given that information, which version should the model recommend to the learner?
To provide a personalised pedagogical suggestion, our approach is to consider multiple
criteria to model the difficulty of a version and to estimate the guitarist’s skill levels. This
allows us to model the pedagogical value of a version for each learner.

Modelling a Version’s Difficulty Each version’s learning difficulty is evaluated accord-
ing to criteria:

{ℓ1 , ℓ2 , . . . , ℓ: , . . . , ℓ }.

Each criterion has a value ℓ: ranging between 0 and 10, where 0 indicates a version that a
beginner can play and 10 is for an experienced guitarist. In this chapter, we consider = 5
criteria, but any number could be used if other difficulty annotations were retrieved. The
criteria we use are the 5 described section 4.1: chord complexity, playing speed, rhythm
difficulty, global rating, and amount of new exercises required.

4.3.2 Estimating a Learner’s Skill Level

How can we describe the skill level of a guitarist 6 across the considered criteria? For
each criterion ℓ: we retrieve, among the versions already practised by the guitarist, the
listV :[#]

6 ⊂ V6 of the # most difficult versions according to that criterion. The skill level
ℓ:(6) of the guitarist in that criterion is then the average difficulty of these # versions:

ℓ:(6) =
1
#

∑
E∈V :[#]

6

ℓ:(E). (4.6)

77

Chapter 4. Difficulty Adjusted Guitar Song Suggestion

For example, with # = 4, a guitarist 6 who knows perfectly Knocking on Heaven’s Door
(all parts, version e) but only the easiest version (c) of Losing my Religion i.e. using the ids
from Table 4.2:

V6 = [1.1.e, 1.2.e, 1.e, 65.1.c, 65.2.c, 65.3.c, 65.c] (4.7)

would have the following skill levels:

ℓ�(6) = 3.75 (3 + 4 + 4 + 4)/4

ℓ'(6) = 1.75 (2 + 2 + 2 + 1)/4

ℓ)(6) = 1.75 (2 + 2 + 2 + 1)/4

ℓ�(6) = 3.00 (3 + 3 + 3 + 3)/4

In the actual recommendation system, the levels of each guitarist are estimated by
selecting # = 15 versions among the ones they practised, which is equivalent to 6 songs
on average. Preliminary experiments showed that it allowed to smooth high values as
desired, because being able to play one difficult song is not equivalent to mastering the
corresponding level of difficulty. Conversely, higher # values tended to underestimate
the learners’ level by including toomany easy versions that advanced guitarists also know
how to play.

4.3.3 Personalised Version Suggestions

Once the learner’s skill levels are estimated, they can be compared to the ratings of a
version to assess the learning difficulty the guitarist would face. A challenge fit ℱ6(E) is
computed for a guitarist 6 wishing to learn a version E. It is calculated as a weighted sum
of the absolute values of challenge criteria �:(6, E), each weighted by a coefficient
: :

ℱ6(E) =
 ∑
:=1

:
���:(6, E)�� (4.8)

Challenge for a Difficulty Criterion. For all difficulty criteria except the number of ex-
ercises, the challenge is modelled using an exponential function with a scaling coefficient
�: and a bias to control the target difficulty �: :

�:(6, E) = exp
(
�:

[
ℓ:(E) − ℓ:(6) − �:

])
− 1 (4.9)

When �: = 0, then the value �:(6, E) equals 0 when ℓ:(?) = ℓ:(6), meaning the ver-
sion exactly matches the guitarist’s level. When �: is strictly positive (resp. negative),
we want the guitarist to target a higher (resp. lower) difficulty than their current level.
The exponential function allows to penalise versions that are harder than what �: per-
mits. This function also has the advantage to be differentiable, which permits training
the coefficients using gradient descent, something that is considered for future work.

78

4.3. A Model for Personalised Suggestion

Table 4.3: Coefficients for each criterion. The � values were set increasing on the 4 diffi-
culty tiers. Tier 2 is meant to be almost the estimated level of the guitarist.

 � � (by challenge)
1 2 3 4

Chords 0.5 1 −0.5 0 1 3
Rhythmic Patterns 0.5 1.5 −0.5 0 1 3
Tempo/Impact . 0.5 1.5 −0.5 0 1 3
Global 0.8 0.3 −0.5 0.5 1 3

Number of exercises 2 0.8 2 3 5 7

Challenge for the New Exercises. We call #�(6, E) the new exercises required to learn
version E. In our corpus, exercises allow students to learn new chords and practise chord
transitions required for the corresponding version. For this reason, some exercises can be
requirements for multiple parts’ versions, we therefore only count exercises not already
practised by the learners as contributions to the learning difficulty. Let �� be the number
of new exercises to practise, the challenge value is then defined similarly as before:

��(6, E) = exp
(
��

[
#�(6, E) − ��

])
− 1 (4.10)

Difficulty Tiers The recommendation system eventually proposes four difficulty tiers.
We chose to havemultiple tierswith 3-4 versions recommended in each level so that learn-
ers have some agency in their practice, and to acknowledge the fact that some recommen-
dations might not be interesting to the students for various reasons. The recommended
versions Ê are the ones with the best (i.e. lowest) challenge fit, for each tier �:

Ê = argmin
E∈V

ℱ6(E) (4.11)

The selection procedure is repeated until each difficulty tier is populated with the best
possible recommendations. For controlling the desired difficulty level, each tier is de-
fined by its own
: , �: and �: parameters. Tier �1 suggests versions that should be easy
to the learner (�: negative), Tier�2 suggests versions at the user’s level (�: ≈ 0), and Tiers
�3 and �4 suggest progressively harder parts (�: positive). The system’s �: parameters
were chosen to target different difficulty levels and to control the number of new exercises
introduced, allowing learners flexibility in shaping their learning paths (see Table 4.3).
Note that the number of exercises that can be considered is never 0 (�: ≥ 2) because each
version has always a few specific exercises that will necessarily be new. The coefficients

: and �: were iteratively refined during the evaluation process (see Section 4.4). The
relatively small amount of data available, combined with the intention to maintain a very
simple and interpretable model, led us to favour manual tuning over automated optimi-
sation techniques, even if we acknowledge that it might introduce bias and overfitting.

79

Chapter 4. Difficulty Adjusted Guitar Song Suggestion

Future work will benefit from users’ feedback in the GSC application that could be used
to update the coefficients through ML techniques.

4.4 Evaluation

With our partnering guitar teacher, we created eight test profiles �1 − �8, representing
guitarist with different skill levels, spanning from absolute beginners to advanced play-
ers. The profiles define songs that are considered already learned by the guitarists, as
well as wish songs that they desire to learn specifically. The test profiles each focus on
different styles, to also reflect different affinities. For each guitarist 6, the model suggests
between 10 and 12 versions (of parts or full songs) with, for each recommended version
E, a suggested difficulty tier)(E, 6) ∈ [1, 2, 3, 4]. Our partner guitar teacher evaluated
the relevance of these suggestions, providing for each recommendation E for a guitarist
6 an expected difficulty tier #(E, 6) ∈ [−∞, 1, 2, 3, 4,+∞], where −∞means that the version
is too simple for 6 and should never have been proposed, and conversely with +∞, that
it is way too difficult. Intermediate values are used to denote the right difficulty tier for
the recommendation, according to the guitar teacher. We acknowledge the limitation of
evaluating the predictions by only one person. Repeating this evaluation process with
multiple teachers will be studied in future work once the GSC app reaches a stable state.

Figure 4.4 shows the distribution of Δ(E) =)(E) − #(E) on the 90 suggestions for var-
ious models (10-12 per test profile). 86% of the suggestions are considered appropriate
by the teacher, that is with |Δ| ≤ 1. Ablation models, in which certain criteria are omit-
ted, still achieve solid results, with correct average prediction rates ranging from 60% to
86%. This highlights the robustness of the proposed approach but also the significance
of individual criteria, particularly the assessed overall difficulty. Indeed, removing the
global difficulty rating results in the worst evaluation results. This supports the idea that
this criterion represents information that is not included in other criteria, further moti-
vating the need for future studies on what musical dimensions could replace this rating.
Besides we notice that the test profiles do not react homogeneously to criterion ablation.
For instance, removing chords rating improves the performance on G3, but the results
plummet if the global difficulty is removed. Conversely, results for G4 stays fairly consis-
tent with at least 60% of correctly recommended songs regardless of the ablation. Overall,
the observed errors mostly concern songs that are either too simple or too complex, even
within challenge levels 1 and 4, respectively. Future work will focus on studying these
edge cases further to improve the model’s accuracy and relevance. We will also need to
clarify if the differences between profiles when removing criteria are due to the profile
definitions favouring some criterion over others, or bias in the evaluation process.

80

4.4. Evaluation

G1 G2 G3 G4 G5 G6 G7 G8

0.2

0.2

0.2

0.2

0.4

0.5

0.6
0.8

0.7
0.6

0.6
0.6

0.3

0.3

0.2 0.2
+

Labels
- -3 -2 -1 0 1 2 3 +

a)

G1 G2 G3 G4 G5 G6 G7 G8

0.2
0.2

0.2
0.4

0.3

0.4

0.5

0.7
0.8

0.5 0.5

0.5

0.6

0.3

0.2

0.2

0.2

0.2 0.2
+

Labels
- -3 -2 -1 0 1 2 3 +

b)

G1 G2 G3 G4 G5 G6 G7 G8

0.2 0.2

0.2
0.3

0.4

0.5

0.5
0.6

0.6
0.5

0.5

0.6

0.2

0.2

0.2 0.2 0.3

0.2

0.20.2
+

Labels
- -3 -2 -1 0 1 2 3 +

c)

G1 G2 G3 G4 G5 G6 G7 G8

0.3 0.3
0.2

0.2

0.4

0.5

0.5

0.7

0.6
0.4

0.5

0.2

0.2

0.2

0.3

0.2

0.2
0.2 0.2

0.4

+

Labels
- -3 -2 -1 0 1 2 3 +

d)

G1 G2 G3 G4 G5 G6 G7 G8

0.2
0.2

0.2

0.2
0.2

0.3

0.4

0.5

0.6
0.8 0.6

0.3
0.4

0.6

0.3

0.3

0.2

0.4

0.2
0.3

+

Labels
- -3 -2 -1 0 1 2 3 +

G1 G2 G3 G4 G5 G6 G7 G8

0.2

0.2

0.2

0.2

0.4

0.5

0.6
0.8

0.7
0.6

0.6
0.6

0.3

0.3

0.2 0.2
+

Labels
- -3 -2 -1 0 1 2 3 +

Figure 4.4: Distribution of the deviations between the predicted difficulty tier and the
expert annotation on 90+ recommendations from 8 test profiles. (Top) Full model. On
average, 61% of themodel’s suggestions perfectly match the difficulty tier from the expert
(0), and 25% deviate of at most 1 tier (+1 or −1). (Bottom) Ablation models, ignoring a)
chords, b) NPM and Rhythmic Patterns, c) global difficulty, or d) number of exercices.

81

Chapter 4. Difficulty Adjusted Guitar Song Suggestion

4.5 Discussions and Conclusion

In this chapter, we presented a recommendation system that estimates the level of learn-
ers across different criteria. That level is then comparedwith the ratings of parts’ versions
in our proprietary corpus tomake difficulty-informed suggestions. However, throughout
this chapter, we identified limitations and areas of improvement for future work. In this
section, we discuss those perspectives further, and reflect upon this industrial collabora-
tion.

4.5.1 Limitations and Perspectives

Pitfalls of the current approach This recommendation system was created jointly with
a partnering guitar teacher to draw from their expert knowledge. However, basing all our
approach on the feedback of a single expert is likely to introduce bias and even overfitting
to a kind of guitar teaching. This is currently a contextual limitation of this research, as
it originates from a collaboration with industrial partners that currently limit the possi-
bilities to open the data to people outside of the project. Opening the annotation data
to other teachers would however allow to make the recommendations more robust and
study possible discrepancies between teaching approaches. Another key limitation of the
work presented in this chapter is also that the evaluation procedure is based on a reduced
number of recommendations analysed by the same guitar teacher. While the different test
profiles are designed tomake the evaluation process systematic and representative of dif-
ferent learners’ backgrounds, the corpus is not covered entirely and we do not dispose of
an automatic way of exploiting this evaluation to update the coefficients (and it would
likely overfit our data). Because the system is currently deployed in the GSC application,
users feedback and usage data will become available. This data will allow to research
reinforcement learning approaches to gradually update the coefficients (X. Wang et al.
2024). Strategies from common recommender systems (Zeng et al. 2024) like collabora-
tive filtering will also become usable andmight improve suggestions by grouping similar
user profiles. Finally, the application currently trusts users’ about their mastery of the
exercises they practised through self-assessment feedback. Implementing automatic as-
sessment algorithms (Eremenko et al. 2020) could ensure that guitarists do not move on
to the next step before really mastering the required techniques, to reduce possible frus-
tration and demotivation (Margoudi et al. 2016).

Suggesting learning paths The suggestionmodel presented in this chapter aims at eval-
uating the guitarist level at a discrete time C, and suggests them appropriate songs to
practise at a time C + 1. While we showed that such suggestions are already satisfactory,
they lack temporal consistency. With our current system, if a specific song the learner
wishes to practise is too difficult, it might never appear in the recommendations. A gui-
tar teacher would be able to elaborate a learning path to allow the student to gradually
reach the required level, but our model has no such planning capabilities. To address

82

4.5. Discussions and Conclusion

Figure 4.5: Mock representation of a learning path. We use two dimensions for clarity but
our current suggestion algorithm uses 5 criteria for computation.

this limitation, Aurélien Jeanneau worked as a research intern, under the supervision of
MathieuGiraud andme, to study possible ways to suggest learning paths to learners. The
studied approach consists in representing the corpus as a graph, by defining a distance
between the learner’s level and the difficulty-annotated versions. This distance is defined
as the fit value (eq. (4.8)) and allows to locate every version in a dimensional space.
Because the objective is, given the current level of the learner, to prepare a learning path
towards a desired version, the task is akin to the shortest path problem. However, given
the musical nature of our research, additional properties are expected from the paths,
like stylistic consistency to some extent, and limiting difficulty peaks as much as possible.
For this reason, the problem is most likely NP-complete, and finding the exact solution is
“prohibitively time-consuming” (Vazirani 2003). Aurélien Jeanneau has thus identified a
variant of the A* search algorithm (Hart et al. 1968) as a promising way of finding the best
learning path. When a guitarist 6 has the objective to learn the version E> , the algorithm
explores the possible versions E on the path and minimises the quantity:

0(E) = ℱ6(E) + ℎ(E, E>) (4.12)

The fit value ℱ6(E) (eq. (4.8)) is used as the distance in our space, and ℎ defines a
heuristic that measures the distance from E to the goal E> . In our case, this heuristic is
the fit value ℱ6∗(E>), with 6∗ the guitarist profile if he had practised the version E. In
other words, the heuristic simply measures if practising E would reduce the distance to
E> . Because minimising 0(E) is equivalent to minimising the sum of the distance and the
heuristic, the best path will not necessarily be a “straight line” towards the objective. A
mock representation of a path is provided Figure 4.5. Experiments yielded results similar
to what is shown, i.e. that the best path tends to include versions that will improve the
learner’s level towards the difficulty of E> on a single criterion, keeping other criterion at
low values. This behaviour is desirable in our situation because learning a song that is
more difficult on a single aspect will be easier that increasing difficulty on all dimensions

83

Chapter 4. Difficulty Adjusted Guitar Song Suggestion

at once. Experiments are still ongoing for the search of learning paths, but high impor-
tance is given to the speed and efficiency of the final algorithm. Current implementations
use a beam search variant of A* (Furcy et al. 2005) to reduce the set of versions that are
explored at each step of the path.

Perspectives of Future Analyses Finally, this collaboration with GSC could be a great
opportunity to study how guitarists learn new songs, and what approaches work best.
One of the first thing that could be studied is whether dividing the corpus in parts and
versions is beneficial to the learning process. While our partnering teacher’s experience
suggests that beginner guitarists tend to learn only specific parts of some songs (a well-
known riff, the chorus to sing along), usage data from the app would allow us to verify
that assumption. Further longitudinal studies could also be imagined, to determine how
learners use the app over a period of several months, and what progress they made.

4.5.2 Conducting Public Research within an Industrial Collaboration

This chapter presented work based on an industrial collaboration. GSC being a start-up
that was created around the time we started working together, I got the opportunity to
see it grow and evolve with time, and to be involved in some of the decisions along the
way. Despite the commercial nature of this collaboration, we comply with our duty of
conducting open research by releasing some of the code and the data openly, as detailed
below.

Commercial application. The commercial application Guitar Social Club, already de-
ployed,5 provides guitarists with a comprehensive environment centred around guitar
playing, with more than 3200 instructional videos. Users can indicate their preferred
styles, the songs they already know, and the songs they wish to learn. The “full model”,
that is the model described here enhanced with additional criteria,6 then recommends
parts’ versions to practise. Guitarists then select the piece they want to work on and
progress through a series of exercises by watching the corresponding videos that guide
them through the learning process.

Open-source and open-data components. Developed in Python, the code for the rec-
ommendation model described in this chapter is available under the LGPLv3+ license at
https://gitlab.com/algomus.fr/guitor/. Although the complete dataset is proprietary, we re-
lease a subset of this data under the open OdBL license, covering difficulty metadata for
41 songs, 111 parts, and 337 versions, as well as 73 expected difficulty tier evaluations.
This public dataset is available on the same git repository.

5www.guitarsocialclub.com, accessed in June 2025.
6Themain addition is an automated global rating that does aweighted combination of themanual chord,

rhythm and other playing annotations.

84

https://gitlab.com/algomus.fr/guitor/
www.guitarsocialclub.com

5

Features for Automatic Difficulty
Assessment of Tablatures

“I was at 200 [bpm], let’s say that was difficult.”

Petrucci (1995)

Contents
5.1 Objectives . 86
5.2 The Tablature Performance Difficulty Dataset 86
5.3 Features for Playing Difficulty Estimation 90
5.4 ML Models for Difficulty Analysis . 95
5.5 Conclusion and Perspectives . 102

As discussed in the previous chapter, the difficulty of performing a piece of music
involves a variety of musical aspects. Can a Machine Learning method automatically
analyse the difficulty of a tablature on multiple criteria? In this chapter, we present a fea-
ture engineering approach for difficulty analysis, trained and tested on a newly-gathered
dataset of difficulty-annotated guitar and bass tablatures. This work was initiated during
a research stay at the Music Technology Group (MTG) in Barcelona (Spain), in collabora-
tionwith Pedro Ramoneda andVsevolod Eremenko. Part of this work has been published
in:

“Towards Explainable and Interpretable Musical Difficulty Estimation: a
Parameter-efficient Approach”

Pedro Ramoneda, Vsevolod Eremenko, Alexandre D’Hooge, Emilia Parada-Cabaleiro,
Xavier Serra.

Proc. of the 25th Int. Society for Music Information Retrieval Conf. (ISMIR), 2024.
(Ramoneda et al. 2024b)

85

Chapter 5. Features for Automatic Difficulty Assessment of Tablatures

5.1 Objectives

The previous chapter discusses how to suggest new songs to guitar learners that are
adapted to their current level, measuring several difficulty aspects of guitar playing. How-
ever, such suggestions require guitar teachers to manually annotate songs on each diffi-
culty criterion. That analysis is time-consuming and has to be conducted by expert teach-
ers. Guitar teachers might benefit from a system that can provide a first rating of songs
they do not know, allowing them to browse faster through songs that might interest their
students. Self-taught guitarists could also benefit from an automatic difficulty assess-
ment tool as a way for them to navigate online resources more easily. Nevertheless, that
difficulty analysis needs to be interpretable and accurate. Indeed, some guitar tablatures
website have difficulty annotations: Songsterr automatically processes tablatures and rate
them from 1 to 8;1 Ultimate Guitar classifies songs in four difficulty categories.2 But both
websites do not share precisely how those ratings are obtained and, while they might
help learners quickly find songs of a general level, guitarists cannot know why a song is
difficult or not. For this reason, during this research stay at the Music Technology Group,
we studied ways to automatically analyse the difficulty of tablatures in a way that is inter-
pretable and might be beneficial to guitar players and researchers. To do so, we assemble
a new dataset from an online community of guitar and bass players, propose features
that could capture difficulty dimensions of tablatures, and conduct preliminary exper-
iments to choose difficulty prediction models that would be interpretable, explainable,
and usable.

5.2 The Tablature Performance Difficulty Dataset

To the best of our knowledge, no dataset of performance difficulty annotated guitar tab-
latures currently exist. For instance, the data we presented in the previous chapter and
in D’Hooge et al. (2024b) and Hassein-Bey et al. (2025) has precise difficulty annotations
on multiple dimensions but corresponds to chord progressions and not tablatures. Like-
wise, in Vélez Vásquez et al. (2023), the difficulty annotations were obtained on chord
progressions with their corresponding positions. To study if difficulty can be studied
from tablatures, we assembled a new dataset, as described below. This dataset will be a
first step towards proposing more difficulty-annotated scores, as they can already exist
for piano in Western classical music (Ramoneda et al. 2023; 2024a).

To protect the community from which the dataset was retrieved, we hereby call the
dataset the Tablature Performance Difficulty (TPD) dataset and only share limited infor-
mation about the data source. Legal aspects that motivate this decision further are dis-
cussed in appendix C. The TPD dataset will nonetheless be shared publicly and openly,
once we publish our results.

1https://www.songsterr.com/, accessed in June 2025.
2https://www.ultimate-guitar.com/explore, accessed in June 2025.

86

https://www.songsterr.com/
https://www.ultimate-guitar.com/explore

5.2. The Tablature Performance Difficulty Dataset

Table 5.1: Grade ranking system used in the competition.

Category Grade

Beginner 1-3
Intermediate 4-5
Advanced 6-7
Master 8-9
Expert 10

5.2.1 Data Source and Difficulty Ratings

The TPD dataset is based on a Competition that has been running in an online commu-
nity for over 10 years. Community members who participate in the competition can join
a league by evaluating their own level to enter one of the four categories: Beginner, In-
termediate, Advanced or Master. Bass players have their own leagues while guitar players
can enter both a rhythm guitar and a lead guitar one. Each week, a song is provided for
every league at all levels. Those songs can be suggested by participants and are rated by
“expert members” of the community before being presented in the competition. Around
week 60, songs started being also graded from 1 to 10, to further classify them inside a
category, as depicted Table 5.1. The Expert level (Table 5.1) is a special category that first
appeared more than 2 years after the beginning of the competition (week 128) and only
comes once a month. Members that tackle this level of challenge are expected to play par-
ticularly difficult songs, or all songs of an album in a row. The songs were transcribed by
several creators, 370 in total. Some transcribers contributed with hundreds of tablatures,
but most (66 %) got one or two transcriptions included in the competition.

5.2.2 Data Retrieval and Preparation

The organisation of the competition is completely open, most of it happening through on-
line spreadsheets. We extracted all metadata available, in particular the difficulty ratings,
and then retrieved the transcription files. While all are indexed through the same web-
site, they are then stored on different cloud providers like Google Drive, Dropbox, Mega
or Mediafire. To fetch the files from all those different sources, we made a scraping script
for each website. When we retrieved the data in Spring 2024, approximately 530 weeks of
competition had elapsed. However, this does not mean that we have access to 530 rated
songs per league, because moderators of the competition can reuse songs selected in the
past from time to time. With this in mind and discarding no longer available or invalid
files, we end up with 1 293 Lead guitar files, 1 297 bass files and 973 rhythm guitar files.
Songs were transcribed by 370 different creators and encompass 765 different artists. We
represent the distribution of difficulty levels Figure 5.1. Technically, there should be the
same amount of songs in all difficulty categories (except the Expert level), the differences
observed are only due tomissing files or the fact that some songswere selected inmultiple
weeks.

87

Chapter 5. Features for Automatic Difficulty Assessment of Tablatures

B I A M E
Categories

0

50

100

150

200

250

300

350

Co
un

t

Bass
Lead Guitar
Rhythm Guitar

1 2 3 4 5 6 7 8 9 10
Level

0

25

50

75

100

125

150

Co
un

t

Figure 5.1: Distributions of files in each difficulty category/level

We can howevermakemore observations on the distribution of songs across difficulty
levels (from 1 to 10, compared to difficulty categories, from B to G). It appears that some
difficulty levels are less used, like ‘1’ in particular, questioning the validity of the defined
difficulty range since it is not useduniformly by the competition’smoderators. Differences
in the relative distributions between leagues are also noticeable, though theymight be due
to “experts” of each league having different frames of reference.

5.2.3 Style Analysis

We hypothesise that the difficulty of interpreting a musical piece is correlated to its mu-
sical style, in the sense that songs of different styles will be difficult for different reasons.
To verify this hypothesis, we need style information for the songs in the dataset. Unfor-
tunately, artist and title metadata are prone to typos or other errors, or might even be of
songs not represented on any standard metadata website (some creators sometimes add
their own unpublished compositions to the competition). However, all song files contain
a 30 s audio excerpt as a teaser. It is defined by the user and usually containing a recog-
nisable part of the song like a riff or a chorus. We extract those and then use one of the
MAEST pretrained deep neural networks (Alonso-Jiménez et al. 2023) to obtain the musi-
cal style estimate of each song using the Discogs styles taxonomy.3. The MAEST models
are based on an audio transformer model trained to conduct style classification from au-
dio, and evaluated on multiple automatic tagging datasets. We use the model trained on
30 seconds audio excerpts4 and directly process the audio teasers after downsampling
them to the expected 16 kHz. Results of this analysis are represented Figure 5.2.

3https://www.discogs.com/, accessed in July 2025.
4Directly available through Huggingface (https://huggingface.co/mtg-upf/discogs-maest-30s-pw-129e, ac-

cessed in June 2025).

88

https://www.discogs.com/
https://huggingface.co/mtg-upf/discogs-maest-30s-pw-129e

5.2. The Tablature Performance Difficulty Dataset

0 25 50 75 100 125 150 175

st
yl

es

Rock---Heavy Metal
Rock---Hard Rock

Rock---Alternative Rock
Rock---Pop Rock

Rock---Prog Rock
Unknown

Rock---Indie Rock
Rock---Punk

Rock---Blues Rock
Rock---Thrash

Rock---Stoner Rock
Rock---Progressive Metal

Rock---Power Metal
Pop---J-pop

Rock---Pop Punk
Rock---Death Metal

Rock---Metalcore
Funk / Soul---Funk
Rock---Psychedelic Rock
Funk / Soul---Disco
Rock---Ska
Rock---Hardcore
Electronic---Synth-pop
Rock---AOR
Rock---Nu Metal

Figure 5.2: Counts of the styles detected in the dataset. Note that styles with less than 10
occurrences were removed for clarity.

While most of the songs are identified as Rock, we canmake distinctions between sub-
styles. With this style data now available, we can study if difficulty is correlatedwith style
to uncover possible biases in our dataset. The dataset shows a clear over-representation of
rock-inspired substyles (Figure 5.2), meaning that our approachmight not generalise well
to unknown styles. Unfortunately, 75 songs could not be classified because they did not
have any (valid) audio teaser file, but manual exploration showed that most are also sub-
styles of Rock, so they would not significantly change the conclusions made previously.

We conduct Kruskal-Wallis tests (Corder et al. 2009) to determine if the difficulty rat-
ings distributions change when grouping songs by styles. The dependent numerical vari-
able is the difficulty category, and the categorical independent variable is either the main
style group (e.g. “Rock”), or the sub-style group (e.g. “Punk”). The null hypothesis is
“there is no difference between the groups’ median values”. It can be rejected if the H-
statistic is greater than "2

2 and the p-value is lower than 0.05. Results for those tests are
provided Table 5.2. It appears that a significant difference between the median ratings
can only be observed when grouping songs by sub-styles for lead guitar. Overall, the re-
sults support the idea that musical style has little impact on the difficulty rating of a song,
i.e. that progressive rock songs, for instance, are not rated consistently lower/higher than
pop rock songs. Those observations are however not enough to definitely conclude that
difficulty is not influenced by musical style, because we only analysed global ratings. Fu-
tureworkwill focus on verifyingwhether songs of different styles are difficult for different
reasons. The style analysis conducted in this section can nonetheless be useful when split-
ting the dataset, as ensuring that the proportions of each style is kept between splitsmight
help themodel generalise better to new data. Indeed, we expect that a model trained only
on rock music would adapt poorly to unseen styles like Jazz, for example.

89

Chapter 5. Features for Automatic Difficulty Assessment of Tablatures

Table 5.2: Results of the Kruskal-Wallis tests comparing difficulty ratings by styles for
each instrument classroom. The only statistically significant result is shown in bold.

Instrument Style Type H-statistic "2
2 p-value

Bass Main Style 12.30 22.36 0.42
Sub-Style 125.72 137.70 0.16

Lead Guitar Main Style 8.37 22.36 0.76
Sub-Style 170.29 136.59 0.000 2

Rhythm Guitar Main Style 6.84 21.03 0.81
Sub-Style 107.31 122.11 0.22

5.3 Features for Playing Difficulty Estimation

To attain an explainable and interpretable difficulty estimation system, we rely upon ex-
tracting features that capture different dimensions of musical difficulty. Our choice of
features is guided by existing knowledge, of previous research (Chiu et al. 2012) for piano
score difficulty analysis, but also guitar schools syllabi (ABRSM 2021; RSL Awards 2023;
Trinity College London 2017). Many of the features presented hereafter are interrelated,
we use them to ensure that most aspects of performance difficulty are captured, and we
analyse their correlation with difficulty ratings at the end of this section.

5.3.1 Instrument-agnostic Features

In Ramoneda et al. (2024b), we presented features that can be used to evaluate the diffi-
culty of piano scores. Some of the features can however be used without any particular
instrument inmind. The first four are taken fromChiu et al. (2012), while the last one was
introduced with our paper:

• Pitch Entropy. The entropy of the observed pitch event, based on the probability to
observe each pitch ? within the set of all observed pitches P :

−
∑
?∈P

%(?) log2 %(?) (5.1)

Pitch Entropy, as emphasised by Chiu et al. (2012), is particularly relevant in assess-
ing musical difficulty. As Sayood (2018) discusses, there is a link between entropy
of a task and the cognitive load it imposes on the performer, a concept that may also
apply to music performance (Palmer 2006);

• PitchRange. The distance between the lowest and highest pitches (numbering them
as MIDI) in the score. Complex pieces might use a greater range of the pitches
available;

90

5.3. Features for Playing Difficulty Estimation

• Average Pitch. The average MIDI pitch value in the score. While it is not a reason
for a piece to be difficult, it might correlate with difficulty ratings, like Pitch Range;

• Average IOI.Average Inter Onset Interval. Average time in seconds between onsets
of two consecutive pitch set events, measures the playing speed. With)8 denoting
the 8th onset time, it is defined as:∑

1≤8≤#events−1 ()8+1 −)8)
#events − 1 ; (5.2)

• Pitch Set LZ. Lempel-Ziv (LZ) complexity of the pitch-sets sequence. Pitch entropy
measures the cognitive load of playing a sequence of pitches. However, music is
often perceived in terms of larger structures like phrases and sections, not just iso-
lated pitches, prompting us to seek a descriptor that captures the “repetitiveness”
of music on a broader scale (Margulis 2014). To this end, we employ LZ-complexity,
a measure of redundancy introduced by Ziv et al. (1978). In the context of music re-
search, it was used for binary encoded rhythm analysis by Shmulevich et al. (2000).
We apply LZ-complexity to sequence of pitch sets by identifying all subsequences
of pitch sets that cannot be reproduced from precedingmaterial through a recursive
copying procedure. The number of such unique subsequences is defined as the LZ-
complexity of the part. This approach allows us to assess the structural complexity
and redundancy of a musical piece.

For this study on guitar difficulty prediction, we also added multiple other instrument-
agnostic features to reduce the risk of missing some aspects of difficulty. The relevance
of each feature will be tested afterwards nonetheless. Added features are:

• Tempo. The tempo of the song, in BPM.While the average IOImeasures the playing
speed, the tempo of the song is a general measure agnostic to the rhythms played;

• Smallest Note Duration. Represents a higher bound of the playing speed;

• Number of Note Onsets. The more notes a song have, the more mistakes might
occur, so counting notes might be an appropriate proxy of difficulty;

• Song Duration. While the duration of a song does not necessarily reflects the dif-
ficulty of playing it, longer songs require musicians to be focused and to maintain
the quality of their playing for a longer time;

• Pitch Entropy Rate. Computed like pitch entropy, but on transitions from one pitch
to another. Denoting consecutive pitch pairs as (?(C) , ?′(C−1)):

−
∑

(?,?′)∈P2

%(?(C) , ?′(C−1)) log2 %(?(C) , ?′(C−1)); (5.3)

• Syncopation. Metric of the syncopation in each bar, based on Fitch et al. (2007) and
Longuet-Higgins et al. (1984), onsets are given a weight and are considered syn-
copated if they break a level of a bar’s “rhythm tree”. The syncopation measures

91

Chapter 5. Features for Automatic Difficulty Assessment of Tablatures

E

B

G

D

A

E

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4
0 4
1

4
2

4
3

4
4 4
5

4
6 4
7

4
8 4
9

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0 11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

Figure 5.3: Numbering of all string-fret pairs on the fretboard.

can also consider ‘salience’, based on Sioros (2014, pp. 75–79), by taking tempo into
account and assessing how it influences the perception of beats. Given the syn-
copation value of notes, we also compute syncopation entropy to determine how
complex syncopation patterns can be;

• Triplets and Sextuplets. We also determine whether a song contains triplets or
sextuplets as a boolean, to determine if those specific rhythms can correlate with
difficulty;

• Number of Different Note Durations. A song with many different note durations
might bemore complex because themusician needs to be able to switch comfortably
between rhythms.

5.3.2 Guitar-related Features

The features presented in the previous section can capture some aspects of musical diffi-
culty, but guitar playing has specificities that call for dedicated features as well. Some are
taken from Chiu et al. (2012) and adapted from piano to guitar, while others are drawn
fromGuitarWPMSyllabi (ABRSM 2021; RSLAwards 2023; Trinity College London 2017).

The first modification proposed is to adapt pitch measures by also applying them to
sequences of string-fret, string, and fret sets data. The string-fret values could be com-
pared to MIDI note numbers for positions on a fretboard, and are defined like shown
Figure 5.3. We expect this representation of the fretboard to be beneficial when combined
with entropy and LZ measures since it encodes additional positional information, com-
pared to pitch data. Applying entropymeasures to string numbers is also away to encode
the picking patterns used for playing a song, while the fret entropy encodes movements
of the fretting hand. Other added features are listed below:

• “Horizontal” Velocity. Adapted from the right and left hand velocity of piano, the
guitar implementation is derived from Hori et al. (2013) and reflects movement of
the fretting hand along the fretboard (from low to high frets). With �(C) and �(C−1) the

92

5.3. Features for Playing Difficulty Estimation

lowest fretted5 position of two consecutive onsets, and 3C the time interval between
them:

1
23C

exp

(
−
���(C) − �(C−1)

��
3C

)
; (5.4)

• Playing Techniques Ratio. Notes with expressive playing techniques are extracted
from the score and compared to the total amount of notes. A tablature with more
playing techniques can be more complex to perform than one with only regular
notes. Refer to chapter 6 for a presentation of the guitar techniques measured;

• Chord Fingering Difficulty. We compute the difficulty of playing chords with the
metric defined inWortman et al. (2021). The authors define acceptable distances be-
tween fingers based on bio-mechanical data, and use them to derive an “anatomical
score” for any possible chord fingering. The implementation is presented in more
details in chapter 7.

5.3.3 Analysing Feature Importance

To assess the relative importance of each feature, we first determine which ones are most
correlated with the difficulty ratings. Because we deal with “heavily-tied rankings” (a lot
of songs have the same ratings), we use the Kendall Tau’s correlation measure in its �2
version (Kendall 1945). Results for the most important features are presented in Table 5.3.
The �2 coefficient is a value between -1 and 1, -1 indicates a strong disagreement, 1 a strong
agreement, and 0 an absence of correlation between the variables.

The first observation is that the LZ features are the most correlated with the difficulty
ratings, for all leagues. It also seems that features based on pitch information or string-
fret numbers are almost identically correlated to the ratings. While many of the most
important features are similar between leagues, it also appears that the league type has
an impact. For instance, the average chord difficulty is relatively important for rhythm
guitar, while not that relevant for lead and bass. Likewise, the onsets entropy, which
measures the entropy of regular and syncopated notes, is fairly correlated to bass diffi-
culty, which seems consistent with how bass parts tend to use complex rhythms like in
Funk or Progressive Metal. However, features that should not correlate with difficulty a
priori are significant in all leagues, like pitch range or fret range. That observation could
be surprising but may be explained by the fact that even if such values can correlate with
the difficulty of a song, they are not necessarily the cause of the difficulty, something that
only musicians can tell currently. For instance, a lead guitar part with a fast solo on high
frets and a melody on the middle of the fretboard will have a wide fret range. The solo
can add difficulty to the part, and is represented partly by an increase fret range.

5I.e. not an open string.

93

Chapter 5. Features for Automatic Difficulty Assessment of Tablatures

Table 5.3: �2 correlation measures of the top 15 features for each league. Some alternate
versions of entropy features are omitted for clarity.

(a) Lead Guitar
Feature �2

String-Fret LZ 0.752
Pitch Set LZ 0.748
String-Fret Entropy Rate 0.654
Pitch Set Entropy Rate 0.652
Has Sextuplets? 0.562
Pitch Range 0.550
Fret Range 0.521
Has Triplets? 0.485
Smallest Note Duration −0.454
Hammer-on/Pull-off Ratio 0.422
Num. of Different Note Durations 0.375
Max Horizontal Velocity 0.374
Song Duration 0.371
Playing Techniques Ratio 0.350
Average IOI 0.308

(b) Rhythm Guitar
Feature �2

String-Fret LZ 0.664
Pitch Set LZ 0.663
String-Fret Entropy Rate 0.589
Pitch Set Entropy Rate 0.587
Smallest Note Duration −0.409
Fret Range 0.357
Std. dev. Horizontal Velocity 0.350
Average Chord Difficulty 0.342
Pitch Range 0.334
Hammer-on/Pull-off Ratio 0.327
Song Duration 0.311
Mean Playing Speed 0.310
Playing Techniques Ratio 0.304
Num. of Different Note Durations 0.303
Max Horizontal Velocity 0.291

(c) Bass Guitar
Feature �2

String-Fret LZ 0.614
Pitch Set LZ 0.613
String-Fret Entropy Rate 0.545
Pitch Set Entropy Rate 0.542
Pitch Range 0.498
Smallest Note Duration −0.411
Fret Range 0.384
Std. dev. Horizontal Velocity 0.354
Syncopes Entropy 0.319
Mean Playing Speed 0.314
Has Triplets? 0.304
Max Horizontal Velocity 0.303
Num. of Different Note Durations 0.289
Playing Techniques Ratio 0.284
Average IOI Squared 0.274

The features least correlated to difficulty are also similar across leagues: features re-
lated to the BPM, time signature or key signature have little to no relation to difficulty
ratings. Their low correlations with difficulty motivated us to discard them in upcoming
experiments.

5.3.4 Defining Feature Groups

We defined several versions of the presented features to see if some implementations bet-
ter captured aspects related to difficulty. We can also verify numerically which features
are most intercorrelated to group them significantly. Those groups will be used in fur-
ther studies to ensure that multiple difficulty dimensions are captured and do not limit
the model to use features of a single group. To do so, we calculate conditional �2 correla-
tions for all feature pairs given a fixed difficulty level, and average the coefficients across

94

5.4. ML Models for Difficulty Analysis

S
m

al
le

st
D

ur
at

io
n

H
ar

de
st

C
ho

rd

A
vg

.
C

ho
rd

D
iffi

cu
lt

y

N
um

b
er

of
N

ot
es

A
vg

.
P

la
yi

ng
S

p
ee

d

A
vg

.
P

la
yi

ng
S

p
ee

d
²

A
vg

.
H

or
iz

on
ta

l
V

el
o

ci
ty

M
ax

.
H

or
iz

on
ta

l
V

el
o

ci
ty

S
td

.
D

ev
.

H
or

iz
on

ta
l

V
el

o
ci

ty

R
at

io
B

en
ds

R
at

io
S

lid
es

R
at

io
P

la
yi

ng
T

ec
hn

iq
ue

s

R
at

io
H

am
m

er
-o

n/
P

ul
l-

off

H
as

S
ex

tu
pl

et
s?

H
as

T
ri

pl
et

s?

N
um

.
of

D
iff

.
D

ur
at

io
ns

N
ot

e
D

ur
at

io
n

E
nt

ro
py

S
td

.
D

ev
.

C
ho

rd
D

iffi
cu

lt
y

P
it

ch
S

et
L

Z

S
tr

in
g-

F
re

t
se

t
L

Z

P
it

ch
R

an
ge

F
re

t
R

an
ge

P
it

ch
C

la
ss

E
nt

ro
py

S
tr

in
g

E
nt

ro
py

S
tr

in
g

E
nt

ro
py

-r
at

e

F
re

t
E

nt
ro

py

P
it

ch
E

nt
ro

py

S
tr

in
g-

F
re

t
E

nt
ro

py

P
it

ch
cl

as
s

se
t

E
nt

ro
py

P
it

ch
cl

as
s

se
t

E
nt

ro
py

-r
at

e

P
it

ch
S

et
E

nt
ro

py
-r

at
e

S
tr

in
g-

F
re

t
E

nt
ro

py
-r

at
e

F
re

t
E

nt
ro

py
-r

at
e

P
it

ch
S

et
E

nt
ro

py

S
tr

in
g-

F
re

t
S

et
E

nt
ro

py

S
on

g
D

ur
at

io
n

S
yn

co
pa

ti
on

S
al

ie
nt

S
yn

co
pa

ti
on

W
ei

gh
te

d
S

al
ie

nt

S
yn

co
pa

ti
on

S
yn

co
pa

ti
on

W
ei

gh
te

d

S
yn

co
p

es
E

nt
ro

py

R
hy

th
m

E
nt

ro
py

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
is

ta
nc

e

Figure 5.4: Dendogram for the hierarchical clustering of features. The horizontal dashline
represents the group splitting threshold.

all difficulty levels and leagues. We then convert these coefficients into a distance matrix
and apply hierarchical clustering based on average distance to identify clusters of corre-
lated features (Figure 5.4). From the resulting dendrogram, we observe that the features
most correlatedwith difficulty are also interrelated, like entropy or LZ features. Wedefine
a grouping threshold of 0.77 and manually adjust some of the groupings to better gather
features representing similarmusical dimensions. We end upwith 7 groups, summarised
in Table 5.4.

5.4 Machine Learning Models for Difficulty Analysis

Differentmodels can be used to study the difficulty of scores in standard or tablature nota-
tion. In Ramoneda et al. (2024b), we introduced a newML architecture dubbed RubricNet
to analyse the difficulty of piano scores in an explainable and interpretable fashion, which
could also be applied to tablatures. We also discuss using GNB models, for their light-
ness and fast training, that allowed us to quickly compare the efficiency of using different
feature sets.

5.4.1 RubricNet

The “RubricNet” network, introduced in Ramoneda et al. (2024b), is shown in Figure 5.5.
As its name suggests, it aims at showing results in a rubric (see for example Vélez Vásquez
et al. (2023)), attributing scores to each aspect of difficulty. It takes as input a set of features,
and outputs a probability estimating which difficulty level the song belongs to.

95

Chapter 5. Features for Automatic Difficulty Assessment of Tablatures

Table 5.4: Groups of features based on their mutual correlation.

Group Features

Speed

Max. Horizontal Velocity
Average IOI
Average IOI Squared
Smallest Duration
Avg. Horizontal Velocity
Std. Dev. Horizontal Velocity

Stamina Number of Notes Played
Song Duration

Structure/Repetition

Pitch Set LZ
String-Fret Set LZ
Pitch Set Entropy-rate
String-Fret Entropy-rate
String Entropy-rate
Fret Entropy-rate

Technicity

Ratio of Expressive Techniques
Ratio of Bends
Ratio of Slides
Ratio of Hammer-on/Pull-off
Max. Chord Difficulty
Avg. Chord Difficulty
Std. Dev. Chord Difficulty

Rhythm

Syncopation Weighted/Salient
Syncopes Entropy
Onsets Entropy
Num. of Different Durations
Note Duration Entropy

Pitch and Position

Pitch Entropy
Pitch Range
Fret Range
Pitch-set Entropy
Pitch-class-set Entropy
Pitch-class Entropy
String-fret Entropy
String-fret-set Entropy
String Entropy
Fret Entropy

96

5.4. ML Models for Difficulty Analysis

Figure 5.5: The RubricNet architecture. Figure from Ramoneda et al. (2024b).

It comprises a series of linear layers dedicated to process individual input descriptors,
followed by a non-linear activation function (tanh).

Given a set of # input features, each feature G8 is first processed through its dedi-
cated linear layer with weight F8 and bias 18 , followed by a hyperbolic tangent activation
function to yield:

B8 = tanh(F8 · G8 + 18) (5.5)

where B8 represents the processed score for the 8-th descriptor. Scores are then aggregated
in a single score (066 :

(066 =

=∑
8=1

B8 (5.6)

The aggregated score (066 is then passed through a final linear layer to obtain the logits for
the difficulty level prediction, which aremapped to probabilities with a sigmoid function:

®% = �((066 · −→F 5 +
−→
1 5) (5.7)

where � denotes the sigmoid function,−→F 5 and
−→
1 5 are theweight and bias of the final linear

layer, respectively.

Ordinal Optimisation This model applies an ordinal optimisation approach (Cheng et
al. 2008), predicting ordered categorical outcomes, i.e. difficulty levels such as beginner
(1), intermediate (2), and advanced (3), through logits. These logits, computed using a
MSE loss, indicate the model’s predictions on the ordinal scale. The difficulty level is
then obtained as:

max{8 where %8 ≥ 0.5 and %9 ≥ 0.5, ∀9 < 8} (5.8)

Advantages and Limitations Like a GNBmodel, RubricNet requires a small number of
parameters: 2 for each input feature (a weight and a bias coefficient), and 2 for each diffi-
culty level at the output stage. Since it is built as a neural network it can be trained with
common gradient descent procedures. However, the experiments conducted on piano
difficulty prediction showed that this model requires precise finetuning of the model’s
hyperparameters to ensure that a satisfying minimum is reached. That hyperparameter

97

Chapter 5. Features for Automatic Difficulty Assessment of Tablatures

searchmakes the training process computationally intensive, but does not change the fact
that the resulting model is small and allows for fast inference. Besides, we showed in Ra-
moneda et al. (2024b) that this model performs at least as well and often better than deep
learning models applied to the task of piano difficulty analysis in the past (Ramoneda
et al. 2024a). Such results are encouraging since they suggest that a computationally ef-
ficient method might be a viable alternative to costly (in terms both of energy and data
requirements) DL models. The RubricNet model is also explainable and interpretable,
which is not the case of the DL methods studied in Ramoneda et al. (2024a), that are only
partly explainable. Indeed, using a reduced set of musical features as input, rather than
an entire tablature or piano score, allows to clearly identify the computational process
that led to the final prediction.

5.4.2 Gaussian Naive Bayes

Naive Bayes models (introduced in chapter 2) are commonly implemented by assuming
that the likelihoods follow a Gaussian distribution. Denoting the mean and the standard
deviation by � and � respectively, the probability of observing the feature value G8 in class
� 9 is:

%(G8|� 9) =
1

�
√

2�
exp

(
−(G8 − �)2

2�2

)
(5.9)

Advantages and Limitations The advantage of using such a system is that it is easy to
fit, small, and efficient, because it only requires two parameters per input feature: a mean
and a standard deviation. Besides, there are even techniques to update the parameters
of a GNB model when additional data is used, without restarting the fitting process en-
tirely (Chan et al. 1982). This update possibility is especially interesting in our case, since
the competition goes on weekly and we might want to update the dataset on a yearly
basis (or more often). However, the “Naive” Bayes models assume that all features are
independent, which is rarely the case, as we studied in the previous sections. Besides, all
features contribute equally to the output classification probability, whichmight not be de-
sired in the case of music difficulty analysis. Fortunately, visualisations like a radar-plot
(Figure 5.7c) can help better understand the internal computations of a GNB model.

5.4.3 Selecting a Subset of Features

One might wonder why we group features, and not just use all of them. Taking advan-
tage of the fast training of a GNB model, we use it to determine the best possible classifi-
cation accuracy with a different number of features on 90% of our dataset. Those experi-
ments showed that the best accuracy increases with the number of features until 7 before
dropping with any additional feature. This trend is consistent for all instrument types
(Figure 5.6). This observation motivates the fact that only a subset of features should be
selected.

98

5.4. ML Models for Difficulty Analysis

2 4 6 8 10 12
Features Quantity

55

56

57

58

59

60

61

62

M
ea

n
Ac

cu
ra

cy

(a) Lead Guitar

2 4 6 8 10 12
Features Quantity

56

57

58

59

60

61

62

M
ea

n
Ac

cu
ra

cy

(b) Rhythm Guitar

2 4 6 8 10 12
Features Quantity

50

52

54

56

58

60

62

M
ea

n
Ac

cu
ra

cy

(c) Bass Guitar

Figure 5.6: Evolution of the mean accuracy with larger feature sets.

However, selecting the best features requires testing at least 100 000 combinations (if we
assume we take one feature of each group defined in Table 5.4). Besides, other considera-
tions for explainability and usability need to be taken into account, as discussed chapter 2.
For instance, while a GNB model can reach more than 50% accuracy (with 5 possible dif-
ficulty classes, random chance would be at 20%) with a single LZ feature, users might
be more interested in a model that analyses difficulty through multiple descriptors. In
snippet 5.1, we show the best feature clusters for lead guitar, obtained by enforcing that
at least one feature from each group (defined Table 5.4) is used before taking another
from that group. Choosing which feature cluster to use is an open question, as accuracy
only might not be an appropriate metric since performance vary by only a few percent-
age points between feature sets. One possibility might be to conduct an online studywith
users to ask themwhat clusters seemmost appropriate to them, but this might depend on
the visualisation chosen. This question therefore remains open and is left to future work.

5.4.4 Visualisations for Usability

When analysing the difficulty of a musical score, we believe the system has to be inter-
pretable and explainable (chapter 2). However, the system should also be usable i.e. eas-
ily accessible to end-users, regardless of their background, allowing them to effectively
understand and interact with the model. If our system is destined to be used by any
musicians, simply providing technical explanations of the results might not necessarily
be enough. A common way of making a model’s prediction explainable and useful is to
implement some sort of visualisation (Chatti et al. 2024; Laato et al. 2022). Which visual-
isation would be the most appropriate for our task?

99

Chapter 5. Features for Automatic Difficulty Assessment of Tablatures

(a) Rubric visualisation

P. E
ntr

op
y (

R)

P. E
ntr

op
y (

L)

P. R
an

ge
 (R

)

P. R
an

ge
 (L

)

Av
g P

. (R
)

Av
g P

. (L
)

Av
g I

OI (R
)

Av
g I

OI (L
)

Disp
. R

ate
 (R

)

Disp
. R

ate
 (L

)

P. S
et

LZ
 (R

)

P. S
et

LZ
 (L

)

0.4
0.2
0.0

(b) Bar-plot visualisation

String-Fret LZ

Average Chord
Difficulty

Fret RangeMax. Horizontal
Velocity

Playing Techniques
Ratio 0.2

0.4

0.6

0.8

1.0
Average
Sample

(c) Radar plot.

0.0

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

Probability

Fret Entropy

Hammer-on/Pull-off Ratio

Syncopation

Avg. Playing Speed

Fret Range

String-Fret Set LZ

B
I
A
M
G

(d) SHAP values decision plot.

Figure 5.7: Possible visualisations for difficulty analysis. The first two are taken from
Ramoneda et al. 2024b.

In Ramoneda et al. (2024b), we showed that predictions can be visualised through a rubric
(Figure 5.7a) or a bar-plot (Figure 5.7b). Predictions from a GNB model can be easily rep-
resented by a “radar-plot” (Figure 5.7c). They can also, like predictions from other mod-
els, be represented through SHAP values (Lundberg et al. 2017) to show which features
made one class be predicted instead of others (Figure 5.7d). All those visualisation pos-
sibilities are however affected by the features chosen for the prediction models to use.
The features are, in that case, as important as the visualisation itself, because they define
the information shared to the user. In that situation, a system that uses only one feature
might perform well, but not be usable because it conveys little information on the rating
obtained. Conversely, a model with over 10 features will be harder to comprehend in a
glance and might not help users either. We showed previously that the best performance
is attained with groups of 6 to 8 features, which might already be too much for users to
understand easily. Choosing an appropriate feature set is thus not only amatter of perfor-
mance, but also of explainability and usability, where even the name of the features can
have an impact on the model’s understanding by users. Those are open questions and
we are considering asking musicians which visualisation styles they prefer in an online
survey, as well as what feature sets seem most understandable to them.

100

5.4. ML Models for Difficulty Analysis

Snippet 5.1 Best feature clusters for lead guitar difficulty estimation.
1. String-Fret Set LZ.

Accuracy: 0.547;

2. String-Fret Set LZ, Fret Entropy.
Accuracy: 0.556;

3. String-Fret Set LZ, Fret Entropy, Average IOI Squared.
Accuracy: 0.584;

4. String-Fret Set LZ, Fret Entropy, Average IOI Squared, Average Chord Difficulty.
Accuracy: 0.551;

5. String-Fret Set LZ, Fret Entropy, Average IOI, Fret Range, Weighted Syncopation.
Accuracy: 0.560;

6. String-Fret Set LZ, Fret Entropy, Average IOI, Fret Range, Weighted Syncopation,
Hammer-On/Pull-Off Ratio.
Accuracy: 0.601;

7. String-Fret Set LZ, Fret Entropy, Average IOI, Average Chord Difficulty, Weighted
Syncopation, Fret Range, Hammer-On/Pull-Off Ratio.
Accuracy: 0.588;

8. String-Fret Set LZ, Fret Entropy, Average IOI, Average Chord Difficulty, Weighted
Syncopation, Fret Range, Playing Techniques Ratio, Note Duration Entropy.
Accuracy: 0.580;

9. String-Fret Set LZ, String-Fret Entropy, Average IOI, Average Chord Difficulty, Syn-
copation Entropy, Weighted Syncopation, Std. Dev. of Horizontal Velocity, Pitch
Range, Playing Techniques Ratio.
Accuracy: 0.556;

10. String-Fret Set LZ, String-Fret Set Entropy, Pitch Range, Hammer-On/Pull-Off Ra-
tio, Average IOI, Weighted Syncopation, Max. Horizontal Velocity, Average Chord
Difficulty, Number of Notes Played, Note Duration Entropy.
Accuracy: 0.588.

101

Chapter 5. Features for Automatic Difficulty Assessment of Tablatures

5.5 Conclusion and Perspectives

In this chapter, we presented a new dataset for tablature difficulty analysis and musical
features to address this task. We analysed those features extensively to determine how
they correlate with actual difficulty ratings and among themselves. While DL models
could be used for automatically analysing tablatures, we presented two interpretable and
explainable alternative models. RubricNet was tested on piano score difficulty analysis
and is a promising option for tablatures. A Gaussian Naive Bayes model could also be
used to predict difficulty from musical features, and it was used to conduct preliminary
analyses on the accuracy that can be reached from different feature clusters. Results sug-
gest that not all features should be used at once, and that drawing features from a pre-
defined group is a valid approach to select meaningful clusters with good performance.
Questions subsist on how to choose between feature clusters with similar accuracy, and
which visualisations would be appropriate to make the difficulty analysis system usable.
Answering those questions would likely require conducting at least an online survey or
even interviews with guitarists, and is considered for future work.

Assembling the tablature dataset was a difficult task because of all the different cloud
providers used, but it proved a valuable resource thatwill hopefully help develop the field
of tablature difficulty analysis (the dataset will be openly released after our first publica-
tion on the topic). Using such data however poses ethical questions, firstly because what
the online community does is on the verge of illegality. Indeed, even though most tran-
scriptions are custom-made, sharing them semi-publicly, with an audio recording, is not
a usage permitted by Western copyright laws (see appendix C). Studying this data and
using it for research thus poses the question of possibly shedding light on a community
that currently benefits from being little known. We chose not to share any compromising
information about the community that created the data in this chapter to avoid affect-
ing it negatively in any way. The dataset will be shared publicly to the MIR community
nonetheless, once the results presented in this chapter are published. Another question-
ing aspect is the scraping of the website’s data. While used for research that will ulti-
mately be as transparent as possible, exploiting the work of transcribers (without them
knowing) is also morally questionable. Testing the models with the community might be
the opportunity for them to share their thoughts on our preoccupations.

102

Part III

Assisting Guitar Tablature
Composition

103

6

Modelling and Predicting Guitar
Techniques: the Specific Case of Bends

“I don’t think I should do big bends like that because it’s going to sound like that era’ –
the boomer-ish sound.”

Tim Henson, in Beato (2021)

Contents
6.1 Introduction . 106
6.2 Digital Representation of Bends . 109
6.3 Bends Computational Analysis . 114
6.4 Bend Prediction Results . 116
6.5 Prediction Analysis . 118
6.6 Controllable Bends Suggestion . 120
6.7 Conclusions and Perspectives . 121

In addition to rhythm and position information, tablatures commonly include a variety
of annotations indicating the use of specific playing techniques. Guitarists are indeed ac-
customed to seeing tablatures with “slides”, “tapping”, or “bends”, for instance. In this
chapter, we introduce our approach for the analysis, modelling and suggestion of guitar
techniques and in particular guitar bends. A guitarist composer could benefit from a sys-
tem that suggests playing techniques as it would allow to render tablature arrangement of
non-guitar songs more idiomatic to the guitar. To do so, we design features that capture
multiple musical dimensions, and use them to train a decision tree and an MLP model
for suggesting where to add bends in a tablature.

The research presented in this chapter has been published in:

“Modeling Bends in Popular Music Guitar Tablatures”
Alexandre D’Hooge, Louis Bigo, Ken Déguernel

Proc. of the 24th Int. Society for Music Information Retrieval Conf. (ISMIR), 2023.
(D’Hooge et al. 2023a)

105

Chapter 6. Modelling and Predicting Guitar Techniques

“From MIDI to Rich Tablatures: an Automatic Generative System incorporating Lead
Guitarists’ Fingering and Stylistic choices.”

Pierluigi Bontempi, Daniele Manerba, Alexandre D’Hooge, Sergio Canazza.
Proc. of the 21st Sound and Music Computing Conf. (SMC), 2024. (Bontempi et al. 2024)

Figure 6.1: First two bars of G.O.A.T., as played by Tim Henson from Polyphia. This
excerpt contains slides, natural harmonics, bends, dead notes, tapping, and a pull-off.

6.1 Introduction

This section presents guitar playing techniques, with a focus on bends, as well as the ob-
jective and motivation for this work.

Guitar Playing Techniques WPM guitarists can use a variety of playing techniques on
their instrument such as slides, bends, harmonics, tapping, etc. All techniques have cor-
responding notation symbols in tablatures, as illustrated Figure 6.1. Playing techniques
can be classified using the twomain categories defined in Bontempi (2025, p. 13), splitting
techniques between articulations and expressive techniques. The former helps to transition
smoothly from one note to another and are mostly used for playability reasons. The lat-
ter serve a musical purpose by adding expressive characteristics to the notes. Table 6.1
reports the techniques discussed further in this section, with descriptions from Bontempi
(2025). In general, lead guitarists in WPM will use such techniques regularly, which is
why any automatic system aiming at generating or arranging realistic and idiomatic gui-
tar tablatures should include those techniques (Bontempi et al. 2024).

StringDistribution of Playing Techniques This chapter focuses on lead guitar, because
melodies and solos use many playing techniques, especially compared to rhythm guitar.
As a first experiment, we conduct a statistical analysis of the playing techniques used in
the mySongBook (MSB) dataset, after extracting a subset of all lead guitar tracks thanks
to Régnier et al. (2021). Figure 6.2 shows the ratio of hammer-on, pull-off, vibrato and
bends, with respect to the total amount of notes on each string. While hammer-on and
pull-off are both techniques used for legato, their distribution across strings are noticeably
different, suggesting that they are not used equivalently by guitarists.

106

6.1. Introduction

Table 6.1: A description of some of the most common guitar playing techniques in WPM.
Definitions are directly taken from Bontempi (2025, p. 13).

Technique Type Description

Hammer-on Articulation This technique involves using a finger from the fretting hand
to hit the string from above, making it vibrate without being
picked. Akin to a legato articulation.

Pull-off Articulation A finger of the fretting hand “pulls” the string, producing a
note lower than the previous onewithout the need to pick the
string. Can be considered the “opposite” of a hammer-on.

Bend Expressive Increases the pitch of a string-fret combination by pushing up
or pulling down the string, perpendicular to the fretboard,
with one or more fingers.

Vibrato Expressive Rapidly bending and releasing a string to rhythmically vary
the pitch.

6(E) 5(A) 4(D) 3(G) 2(B) 1(e)0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ra
tio

Hammer-on
Pull-off
Vibrato
Bends

Figure 6.2: Ratio of the use of playing techniques to the total number of notes for each
string. Strings are labelled according to guitar standard tuning, the 6th string being the
low “E” and the 1st string the high “e”.

It can also be observed that vibrato and bends are used with similar ratios on the three
high strings. However, bends are rare on lower strings probably because thicker strings
are harder to bend, while a vibrato is a smaller movement that is manageable even on
stiffer strings. This simple analysis already shows that biomechanical affordance of the
guitar can affect the use of playing techniques, especially for bends. This observation
supports the idea that a feature-based approach could be used to suggest where to add
playing techniques in a tablature in an idiomatic manner. The rest of this chapter focuses
on suggesting bends, and they are presented in more details hereafter.

107

Chapter 6. Modelling and Predicting Guitar Techniques

Figure 6.3: A bend being performed on guitar. Photo source: musicradar

Figure 6.4: Five different bend types and their corresponding tablature notation in Guitar
Pro. “full” denotes an amplitude of a whole step, numbers on the last bend are the am-
plitude in number of whole steps.

Bends The guitar, whether acoustic or electric, is (usually) a fretted instrument. This
enforces the playing of discrete pitch values on a chromatic scale. This constraint can be
beneficial, as it limits the risk of playing out-of-tune. However, it also preventsmicrotonal
experiments or continuous pitch shifts, which can be a powerfulmeans ofmusical expres-
siveness. To overcome this limitation, guitarists can use bends, a technique that consists
in altering the string tension with their fretting hand (Grimes 2014) to reach a completely
new pitch, up to several semitones higher (see Figure 6.3). We considered that bends
were particularly interesting to study in the way they allow for continuous pitch varia-
tions. This specificity allows to play notes in a way that can sometimes be compared to
singing (Kolb 2020), and multiple types of bends can be encountered.

While guitar players mostly agree over the existing types, the names used can differ.
In this chapter, we consider the five bend types described in Gomez (2016): Basic upward,
Held, Reverse, Up & Down, and Complex bends i.e. bends that do not belong to any of the
previous categories. Figure 6.4 shows that writing bends in tablatures can be complex,
but most notation software allows precise engraving (Figure 6.5). This can be linked to
the prescriptive nature of tablature notation and how it conveys gesture to the guitarist.
With arrows indicating the string movement, the guitar player only have to reproduce it
with their fretting hand and can anticipate how the pitch will evolve without looking at
the standard notation staff.

108

https://www.musicradar.com/tuition/guitars/guitar-basics-string-bending-166345

6.2. Digital Representation of Bends

Figure 6.5: Screenshot of the bend notation window in Guitar Pro.

Motivation and Objective Deciding where and when to use bends is part of the idioms
of guitarWPMplaying and an important part of learning those styles. However, deciding
when to use different bend types might not be as natural for a beginner than for an exper-
imented guitarist. For instance, a guitarist playing a score that was composed for another
instrument or a MIDI file arranged to a tablature (Edwards et al. 2024) may want to add
expressiveness using bends, and could need help on deciding which notes to bend and
which bend to use. In this chapter, we design an approach for suggesting guitar players
with notes that should be bent in a tablature. With such a tool, it would for instance be
possible to adapt a melody composed for a piano into an idiomatic and expressive guitar
tablature.

6.2 Digital Representation of Bends

To formulate bend prediction as a machine learning task, we adopt a representation for
bent notes consisting of four different labels and present it in this section. We also propose
an approach to pre-process our data to obtain “bend-less” scores thatwill be used as input
to a bend suggestion model. Finally, this section also presents the features designed for
training an ML model for bend suggestion.

6.2.1 Labelling

In the introduction, we presented the different types of bends that can be encountered in
guitar tablatures. Based on this taxonomy, we define 4 labels that represent the motion
and current state of the played string for every note:

• ∅ — the string is not bent;

• ↑— the string is bent, causing the pitch to go up;

• → — the string was bent previously and is plucked again in that state. The pitch is
constant, but is not the one expected from the string-fret position;

• ↓— the string was bent and is released, making the pitch go down accordingly.

109

Chapter 6. Modelling and Predicting Guitar Techniques

Figure 6.6: A complex bend and its corresponding labels. Each label corresponds to one
note in the score (even if they are tied).

Figure 6.7: Excerpt from Lynyrd Skynyrd’s Free Bird solo (written and played by Allen
Collins). String movements are labelled above the standard notation staff.

We define those labels to circumvent the issue with up & down and complex bends that
can be written in several different ways in tablature notation. Labelling notes with the
associated string movements indeed permits representing bends accurately, without loss
of generality, even for “complex bends” (Figure 6.6). Using these labels, all non-bent notes
will be labelled∅, basic upward bends are labelled ↑, held bends correspond to→, and reverse
bends are ↓. To fitwith this representation, up& down bends are split into two notes of equal
duration (half the duration of the original note), the first one being labelled with ↑, and
the second one with ↓. An example of such labelling on an actual guitar track is shown
on top of Figure 6.7.

While bends can be of different amplitude, we do not include that information in our
labelling. We do not aim at predicting amplitude in this work but only focus on predict-
ing when bends occur. Similarly, we do not distinguish single notes from chords when
predicting bends. This means that when the system predicts the presence of a bend in a
chord, it does not specify on which string it occurs. The impact of this simplification is
however minor, as 12% of the bends in our lead guitar dataset occur in chords.

6.2.2 Deriving a Bend-Less Score Simplification

Since our goal is to predict whether each note of the score is played with a bend, we
must start from a “simplified” tablature that does not have any bend information, to use
it as input to an ML model (Figure 6.8). Removing bend annotations from a tablature is
however not a straightforward task since bending affects the pitch of the note performed.

110

6.2. Digital Representation of Bends

Figure 6.8: Example of the same melody played with (left) or without (right) bends.

Steve Vai's
Transcription

Possible

Tablature

Bend-Less
Tablature

Figure 6.9: Excerpt fromWatermelon in Easter Hay, composed and played by Frank Zappa,
as transcribed by Steve Vai (Zappa 2017) in standard notation (top). Below are two pos-
sible tablature representations of this excerpt with (middle), or without (bottom) bends
transcribed manually.

We design the following procedure when translating bent notes from the string-fret space
to the pitch space:

• If a note is labelled by ∅, its pitch is directly obtained from the string-fret combina-
tion;

• Otherwise, the pitch is the one of the bend arrival note. In particular:

– if the label is ↑ or→ , the arrival pitch is the pitch of the string-fret combination,
to which the bend amplitude is added;

– if the label is ↓ , the arrival pitch is either the one corresponding to the string-
fret position, if the string is released to its default state, or derived from the
amplitude as before if the bend is partially released.

This approach is also the one chosen by Steve Vai when transcribing Frank Zappa’s
melodies to standard notation (Figure 6.9). The middle tablature in Figure 6.9 shows how
this excerpt is actually played (based on a live performance) and the bottom tablature
illustrates how the same excerpt might be played without bends. This is nonetheless an
assumption because there is an uncertainty regarding where a bent note would be played

111

Chapter 6. Modelling and Predicting Guitar Techniques

Table 6.2: List of the high-level features extracted from the note events. n denotes the
current note index, and an exponent on a feature indicates on which neighbours it is
computed. : ∈ {1, 2} for features that are only computed on neighbours and not the
current note, and 9 ∈ Jn − 2, n + 2K (i.e. computed on all notes). If no exponent index is
specified, the feature is only computed on the current note n.

Temporal

Duration
Beat Strength
Longer than previous
Shorter than previous
Same duration as previous

Pitch

Number of notes
Pitch(9)

Pitch jump(n±:)

Accidentals
Pitch-class w.r.t scale root

Position

Fret(n±:)
String(n±:)
Fret jump (n±2)

String jump (n±2)

on the fretboard without a bend (keeping its destination pitch but losing the technique).
A guitar player might indeed choose to play a note on a higher string, if remaining on the
same string called for an uncomfortably large hand span. Because deciding arbitrarily
of a hand position could introduce bias into our model, we choose not to include any
string-fret information concerning the current note in the proposed features for our bend
suggestion task, as explained hereafter.

6.2.3 High-level Features for Bends Suggestion

To suggest what notes should be bent, we propose an intermediate representation as a
set of high-level features, presented in Table 6.2. Using these features allow to extract
musical data we expect to be correlated with bend usage rather than train a large neural
network that would automatically extract intermediate features. Besides, choosing the
features beforehand allows an ML model’s predictions to be more explainable, as some
architectures can be analysed to determine what input features contributed most to the
results.

Some of the features used focus on the event under scrutiny, while others provide
short-term context, both from the past and the future. Part of the features are derived from
standard notation and convey temporal and pitch information, while others are related
to position and the tablature space. If the studied event is a chord, the pitch, fret, and
string values are averaged over all its constituting notes. While the average might seem
an overly simple metric, experiments with other functionals such as min, max or standard
deviation did not improve results. We discard any open strings for the fretboard features
so that the average fret and string represent the actual position of the fretting hand. Apart

112

6.2. Digital Representation of Bends

?

Note
studied

Neighbourhood

Pitch

Upcoming

String/Fret

Duration difference

Duration = 1
Beat Strength = 0.5
Longer than prev. = True
Shorter than prev. = False
Same dur. as prev. = False

Temporal

Num. notes = 1
Pitch = [D3, E4, F#4, D3, B3]
Pitch Jump = [5, 2, -5, -8]
Accidentals = 0
Pitch Class in scale = 9

Pitch

Frets = [7, 9, 7, 9]
Strings = [3, 3, 3, 4]
Fret Jump = [2, 2]

String Jump = [0, 1]

Position

Figure 6.10: Illustration of the feature definitions, and values for the note studied.

from absolute/relative duration values, temporal features include the beat strength, which
is a value between 0 and 1 suggesting how “strong” the beat of a note is. We obtain
this value from the default implementation of the music21 library (Cuthbert et al. 2010).
These beat strength values have been designed for Western classical music, and therefore
may be debatable for WPM. However, they are mostly used here to represent onset times
independently of the time signature, while grouping notes that share rhythmic properties.

In addition to the features on the current note, we extract a context of two past and
two future note events (Figure 6.10), as preliminary experiments did not show any bene-
fits in using longer contexts. Additional boolean features are provided to recall if a neigh-
bouring note event is missing, when a note is preceded or followed by a whole rest for
instance. When a note is missing, all corresponding features are set to 0. From this con-
text, we compute the pitch jump between neighbouring notes as well as the string and fret
jumps when they are defined, i.e., not with respect to the current note (because we do not
know where the guitarist would play the note if they were to bend it). We expect these
features to help our algorithmderive the hand position on the fretboard. Furthermore, we
add information about the key signature through the number of accidentals (positive for
sharps, negative for flats). Fortunately, the key signature is transcribed properly within
the MSB dataset, unlike DadaGP where most transcribers only use accidentals within the
score and do not define a key signature for the piece.1 From those accidentals, we derive
the root note of the corresponding pentatonic minor scale (that scale encompassingmuch
of guitar WPM Temperley 2018) and store the position of each note on this scale. For ex-
ample, one sharp would make the root E (based on E minor, relative of G major), and an
A would therefore be numbered 5 since it is 5 semitones above E.

1Amateur transcribers will usually only write the tablature notation, and the standard notation staff is
filled automatically in most tablature notation software. Since they probably do not even look at it, they
might not think about setting a key signature for the song that would make the score more readable (and
allow for easier computational musicological analyses).

113

Chapter 6. Modelling and Predicting Guitar Techniques

Table 6.3: Number of notes per label in our dataset.

∅ ↑ → ↓ To-
tal

123 231 9 627 1 270 3 314 137 442

Bent Notes

Lead Guitar

Complete Dataset

Figure 6.11: Normalised heatmaps of all notes inMSB (top), all lead guitar notes (middle),
and bent notes among the lead notes (bottom). The bigger a circle is, the more notes are
played on this location. Counts are normalised by the respective total amount of notes.

6.3 Bends Computational Analysis

All experiments have been conducted on the MSB dataset. A subset of 932 tracks esti-
mated as lead guitar – totalling more than 130 000 notes – was extracted by applying the
classification technique from Régnier et al. (2021). Our experiments focus on lead guitar
parts because they tend to feature heavier use of playing techniques. In contrast with
the whole corpus, which includes 2.5 % of bent notes, our lead guitar sub-corpus indeed
contains 10% of bent notes. While this means that the classes (non-bent notes and bend
types) are still highly unbalanced, focusing on lead guitar mitigates this imbalance.

Bend Features Distribution Table 6.3 reports the number of each type of bend in our
corpus. The distribution of bent notes on the fretboard, compared to all notes, is shown
in Figure 6.11. We confirm the trend from Figure 6.2 that most bends occur on the top 3

114

6.3. Bends Computational Analysis

30 40 50 60 70 80 90 100
MIDI Pitch Value

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

(a) Pitch

1/16 1/8 1/4 1/2 1
Beat Strength

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

(b) Beat Strength

Duration
0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

(c) Duration

Bend Type
0.0

0.2

0.4

0.6

0.8

1.0

Di
st

rib
ut

io
n

of
 d

ur
at

io
n

di
ffe

re
nc

es

Longer
Equal
Shorter

(d) Duration difference with previous

Figure 6.12: Distribution of four of the extracted features, normalised per bend class.

strings, but also in themiddle area of the fretboard. This observation differs from notes in
general that are played on all strings, and especially on the two middle ones and around
the 2nd fret for MSB as a whole and the 7th fret for the lead guitar subset. While it is
possible that the obtained heatmaps are biased by an over-representation of certain key
signatures in the dataset – 43% of the tracks are in G major/E minor or C major/A minor
– this bias should affect all heatmaps equally, so their mutual comparison is still possible.
Because bent notes are found on both higher strings and higher frets than all notes, their
pitch is similarly higher on average, as it can be observed in Figure 6.12a.

The distribution of beat strength values is shown in Figure 6.12b. Because most beats
and sub-beats in ameasure have a beat strength of 0.25 or below, no label is mostly played
on strong beats. An interesting result nonetheless is that ↑ and ↓ labels appear more often
on stronger beats than ∅ and →. This apparent correlation of ↑ and ↓ labels with the me-
ter might suggest a link between note expressiveness and accentuation in performance,
which would need to be investigated further. In contrast, the → label is most often en-
countered onweaker beats. This observation can be linked to the fact that this technique is
often used as a quick repetition of the previous note and will thus be played on the next
offbeat, like in Figure 6.7.

The comparison of the duration of notes with or without bends (Figure 6.12c) con-
firms that ↑ and ↓ labels share some essential properties. Both labels have a proportionally

115

Chapter 6. Modelling and Predicting Guitar Techniques

higher tendency to be found on notes with longer durations, even though eighth note is
the most common duration for all classes. This figure also confirms that∅ and→ classes
share some context properties. Figure 6.12d shows a strong tendency of ↑ labels to appear
on notes with longer duration than their predecessor. This further supports the hypothe-
sis that upward bends could be used to emphasise significant notes in a lead guitar part.
This observation could also be related to Figure 6.12c and the substantial physical effort
required to bend a string on short duration notes.

6.4 Bend Prediction Results

In this section, we present the performance of the decision tree trained to predict the
labels of each note from the MSB lead guitar subset. We also present results of a feature
importance analysis used to identify which features contribute most to the predictions of
themodel. Overall, wedemonstrate the validity of our approach for suggesting bends, but
observe surprisingly that features related to hand position contribute less to predictions
than pitch and duration information.

6.4.1 Model Performance

We trained a decision tree (see section 2.2) to predict the bend label of a note from its
feature representation. We choose this high-level approach to facilitate the interpreta-
tion of the results as well as the analysis of the contribution of the features. In addition
to the elaboration of a predictive model, conducting our experiments in an explainable
AI framework allows us to improve our understanding of the use of bends in this reper-
toire. Our classifier is trained on 75% of the dataset, and evaluated on the remaining 25%.
To avoid some leakage from the training set to the test set, we ensure the split does not
separate excerpts from a same track. We also ensure that each bend class is represented
similarly in both sets. Duplicate feature vectors are removed track-wise to avoid overfit-
ting due to repeated riffs/patterns. But, we acknowledge the fact that identical feature
vectors can be found in different tracks and thus keep duplicates when found in different
files. We use a decision tree with a Gini criterion and allow the creation of new branches
until all final nodes were pure, i.e. with a single possible bend label in each leaf.

The confusion matrix of Figure 6.13 (left) shows the results of the multi-class classifi-
cation on the joint prediction of all labels. Because the dataset is highly unbalanced, our
model is naturally biased towards the ∅ label. However, it successfully identifies more
than half of the ↑ and ↓ labels. Samples labelled as → are often misidentified as ↑ but
this result still shows, presumably, that the model captures the difference between ∅ and
→ labels.

To reduce class imbalance, we tried applying SMOTE oversampling (Chawla et al.
2002) to the training data. This technique consists in taking samples of classes that are

116

6.4. Bend Prediction Results

Predicted label

Tr
u

e
la

b
el

28566
94%

1237
4%

179
< 1%

513
2%

786
36%

1298
59%

94
4%

23
1%

133
47%

56
20%

83
29%

14
5%

312
40%

37
5%

3
< 1%

424
55%

0.2

0.4

0.6

0.8

F1-Scores

0.95

0.54

0.26

0.48

Mean: 0.56 Predicted label

Tr
u

e
la

b
el

25343
88%

1932
7%

494
2%

1079
4%

592
25%

1347
58%

327
14%

67
3%

74
25%

61
20%

160
53%

5
2%

195
24%

35
4%

10
1%

567
70% 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1-Scores

0.92

0.47

0.25

0.45

Mean: 0.52

Figure 6.13: Confusion matrices obtained for classifying each note event to one of the
bend class either without (left) or with (right) SMOTE oversampling. Those matrices are
obtained on a split with average performance.

Table 6.4: Feature importance of the 8 most significant features for the decision tree. Stan-
dard deviation of any feature importance is never above 0.005.

Feature Importance

Pitch 0.20
Pitch jump(n+1) 0.17
Pitch jump(n−1) 0.16
Duration 0.14
Same duration as previous 0.07
Fret jump(n−2) 0.07
String(n+1) 0.05
Pitch(n+1) 0.05

under-represented and create newartificial samples in the neighbourhood of the real sam-
ples, until classes are balanced. We observed (Figure 6.13, right) that this oversampling
technique doubles the number of correctly identified → notes and increases the ratio of
well-classified ↓ notes by 15%pt. (percentage points). Nevertheless, ↑ notes True Positives
(TP) ratio is about the samewhile the quantity of ↑notesmisidentified as→ or ↓ increases.
Similarly, TP ratio of ∅ notes drops by 7%pt., so 3 000 more notes are wrongly predicted
as bent. Because we observed that bent notes are sparse in guitar tracks, we consider that
precision is more important than recall and do not use any oversampling for the rest of our
analysis.

6.4.2 Feature Importance

To assess the contribution of each feature, we conduct an all bend binary classification ex-
periment where ↑,→, ↓ are merged into a single class, versus the∅ class. Table 6.4 shows
the importance of the eight most contributing features, computed using the random fea-
ture permutation technique (Breiman 2017) and monitoring its impact on the F1-score of
our model. Temporal and pitch features appear to have a higher impact on classification
than position-related features, an observation confirmed by training the binary classifier

117

Chapter 6. Modelling and Predicting Guitar Techniques

Fu
ll

Fu
ll+ Pi+

T

Pi+
Po

s

Po
s+

T Pi Po
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F 1
sc

or
e

Figure 6.14: Average F1-scores from4different train/test splits for the binary classification
task. The leftmost part shows the performance of the decision tree trained on all features,
with (Full+) or without (Full) SMOTE oversampling. The rightmost part corresponds to
decision trees trained with a reduced set of features. T stands for temporal , Pi for pitch
and Pos for position features.

on selected subsets of features. The results in Figure 6.14 indeed confirm the dominant
influence of pitch features. However, adding gesture and temporal information improve
the F1-score by over 0.05. This result suggests that, while fret context contributes to in-
duce bent notes, a large part of the prediction can be done from the strict pitch and rhythm
content as it would be written in standard notation.

6.5 Prediction Analysis

In addition to the quantitative results presented in the last section, we present a qualitative
analysis of selected predictions. Two examples were selected based on their representa-
tiveness of the errors commonly done by the model (considering the original tablature as
the ground truth), and the decision path of the misclassified notes are studied to under-
stand where the model diverged from the expected class.

Figure 6.15a shows one bent note wrongly classified as ∅ and, conversely, one non-
bent note classified as ↑ . Following the decision path provided by the decision tree (Fig-
ure 6.20), we can gain some insight on what feature differences have caused those wrong
predictions. Both notes actually have more than half their decision path in common and
split on their Pitch jump(=+2) value, their first divergence being due to future context. In
particular, the second false prediction did not use any features related to past context. This
might explain this error because the pitch could indeed be obtained by bending on the
10th fret by one semitone (an information that makes sense based on future context) but
continuity with the previous notes called for playing the note without bend on the 11th
fret (an information that should have been derived from past context). Another observa-
tion is that, in spite of similar context, the second bent note was misidentified whereas

118

6.5. Prediction Analysis

HS 1 HS 3 HS 2

(a) Excerpt from Highway Star, Deep Purple (composed and played by Ritchie Blackmore).

JB 1 JB 2 JB 3

(b) Excerpt from Jailbreak, AC/DC (composed and played by Angus Young).

Figure 6.15: Examples of excerpts with predictions obtained with our Full Tree model.
Predicted labels are shown in red. Only wrong predictions are shown for clarity. All
other notes are labelled correctly. Decision paths for Highway Star (HS) and Jailbreak
(JB) are shown Figure 6.20 and Figure 6.21, respectively.

the fourth bent note was not (Figure 6.20c). While those two notes look very similar at
first glance, the latter has a longer duration because it is tied to the following eighth note,
which illustrates the importance of the duration feature. An analysis of the decision paths
indeed shows a divergence from the second decision rule, based on that feature. This
highlights the presumably strong influence of rhythm in the classification of the first four
bent notes, which bypasses pitch features.

Figure 6.15b shows a regular note wrongly tagged with a ↑ label (Figure 6.21a). The
decision path for this prediction does not consider any feature related to the next note.
It does however use many features concerning the second next note, which was correctly
classified as ∅ , most likely because of its lower duration. The lack of information about
the current note’s position was probably critical in that case. Larger past context and
fingering information might also have helped making the decision because the first note
of the bar suggest putting the index finger on the 12th fret, which makes the bend very
unlikely. The second error on that tablature is an up & down bend that was not identified,
probably because of the short duration of the involved notes. Nevertheless, this example
suggests that our method to obtain a bend-less transcription from an up & down bend
might be detrimental to the algorithm performance. Indeed, our procedure has an impact
on duration and pitch jump(n±1) which are among themost useful features to our algorithm.
Despite those errors, we observe that our algorithm predicted correctly six bend labels in

119

Chapter 6. Modelling and Predicting Guitar Techniques

(a)

(b)

Figure 6.16: Chopin’sNocturne Op.9 No.2 arranged for guitar, without bends (top) or with
bends suggested by our model (bottom).

the selected examples with a limited amount of false positives. These encouraging results
suggest that ourmethod could be used as a suggestion tool for the idiomatic use of bends.

Example of Suggested Bends for Non-Guitar Music To further demonstrate the capa-
bilities of the model, we use it to suggest bends on a tablature arranged from non-guitar
music. We start with the opening theme from Nocturne Op.9 No.2 by Frédéric Chopin
and a tablature arrangement is made manually (Figure 6.16a). Then, this arrangement
is pre-processed to extract features for each note, and the trained decision tree is used
to suggest where to add bends. Figure 6.16b shows the resulting tablatures, with bends
added as per the model’s suggestions. Because the model does not predict an amplitude
for the bends, theywere chosenmanually and the fret positions updated accordingly. The
resulting tablature is convincing and bends are located on notes where they can add both
expressiveness and improve playability by reducing finger movement in some occasions.

6.6 Controllable Bends Suggestion

While the performance of the decision tree is satisfactory, the model does not allow to
gradually add more bends to a tablature. Indeed, as we update the tree until all leaves
are pure, decisions for each note are final and we lack a way to add more bends to a
tablature gradually. For this reason, we experimented with replicating the experiments
with an MLP (see section 2.3) so that the predictions can be between 0 and 1. While
the predictions should not be considered equivalent to probabilities a priori (Guo et al.
2017), the fact that they are float values means it is possible to define a decision threshold
to accept the prediction of the model anywhere between 0 and 1. In that way, a high
threshold will only accept very confident predictions, which is equivalent to having a

120

6.7. Conclusions and Perspectives

Predicted label

Tr
u

e
la

b
el

29666
97%

640
2%

35
< 1%

154
< 1%

1164
53%

981
45%

48
2%

8
< 1%

161
56%

90
31%

34
12%

1
< 1%

462
60%

9
1%

0
< 1%

305
39%

0.0

0.2

0.4

0.6

0.8

F1-Scores

0.96

0.50

0.17

0.49

Mean: 0.53

Figure 6.17: Confusion Matrix of the predictions of the MLP model on the same test set
as the decision trees, with a threshold of 0.5.

small amount of bends due to class imbalance, while a very low threshold might add
bends to almost all notes on the tablature.

We build an MLP model using scikit-learn, with 5 hidden layers of size

[50, 30, 20, 20, 10]

with a tanh activation function after each. The performance on the test set is slightly lower
than the decision tree (Figure 6.17) but it would probably be possible to reach similar
or even better performance by searching for better hyper-parameters. Because this was
mainly intended as a proof-of-concept, we judged the performance sufficient.

In Figure 6.18, we show how bends are added when diminishing the decision thresh-
old on the same input tablature. The main observation we want to share is that lowering
the threshold increases the amount of bends as expected (even though the increase is not
linear), but also that the bends are still added on meaningful notes that contribute to in-
creasing the expressiveness of the melody. For instance, with a threshold of 0.3, bends
are only suggested on long notes that begin sub-phrases of the riff. The last note being
bent is not an ideal choice knowing that the 4 bars are looped, but given that the model
did not have access to this future context, adding a bend on that spot allows to reduce fin-
ger movement efficiently. Besides, even with a very low threshold of 0.05, bends are still
added on meaningful notes and playability is overall preserved. In particular, no bends
are added on the final upward scale (except the last note), where bending a string would
hinder playability.

6.7 Conclusions and Perspectives

In this chapter, we proposed a modelling strategy for guitar bends and discussed how
these expressive playing techniques relate to both tablature and score content. Introduc-
ing a set of high-level features, we showed that a decision tree can successfully predict
bend occurrenceswith satisfactory precision, in spite of the difficulty of the task due to the

121

Chapter 6. Modelling and Predicting Guitar Techniques

Threshold

1

0.5

0.3

0.1

0.05

Figure 6.18: Tablature excerpt with bends suggested by the MLP model with different
thresholds. Tablature arranged from the saxophone theme of Careless Whisper, George
Michael.

low proportion of bent notes in guitar music. However, the low performance on predict-
ing→ labels suggests that our modelling choices could be improved and that held bends
might not be considered as an expressive technique but rather anotherway of playing reg-
ular notes. It is also possible that our approach, because it is not based on an RNN, lack
sequential information that would allow to predict → bends that are informed by past
(and possibly future) bends. An advantage of our approach is the use of a lightweight
and explainable algorithm, facilitating its use in an assisted-composition context. In fu-
ture work, this approach could be extended to other guitar playing techniques, andmight
benefit from adding more context information like the chord being played over a bar, us-
ing rhythm guitar parts aligned with lead guitar, etc. While less explainable, it might
also be worth using more complex models like BERT as it proved efficient on predict-
ing tablature from standard notation (Edwards et al. 2024). Because bends are arguably
more commonly performed with the ring finger and little finger than other fingers of the

122

6.7. Conclusions and Perspectives

Figure 6.19: Screenshot of the demonstration interfacemade byLéoDupouey in alphaTab.
The first slider at the bottom controls the decision threshold for bend suggestion.

fretting-hand, combining our work with finger prediction technique (Hori 2021) might
also improve prediction performance. Besides, our modelling strategy could also be used
to study the playing style of specific guitarists, and evaluate the potential of bends for
automatic guitarist identification (Sarmento et al. 2023b).

Finally, to better help tablature composers use this model and move from prediction
to suggestion, we studied using an MLP model and controlling the output threshold to
add bends gradually. For it to be really useful, however, it should be integrated within
the tool already used by guitar composers like Guitar Pro. Léo Dupouey worked as a
research engineer at LaBRI with that goal in mind, and integrated the bend prediction
MLP in an online tablature visualisation website based on AlphaTab.2 A screenshot of
the system is shown Figure 6.19. Next steps should include interviewing guitar players
and receive their feedback on this tool, as conducted by Baptiste Bacot in preliminary
works (Bacot et al. 2024). Because the system aims at providing interactive suggestions,
interviews would permit guitarists to express directly the strengths and weaknesses of
the model. Adding support of other techniques and suggesting the amplitude of bends
are likely to be among the first improvements requested.

All code related to this chapter is made publicly available (parsing of .gp files, extrac-
tion of features, training, and evaluation of bend classification models) under a GPL-3.0
license. We also release the complete set of features extracted on each note of our corpus
under an ODbL license at: http://algomus.fr/code/.

2https://alphatab.net/, accessed in June 2025.

123

http://algomus.fr/code/
https://alphatab.net/

Chapter 6. Modelling and Predicting Guitar Techniques

Node 0
(mean_pitch = 0.66667) > 0.58073

Node 5294
(duration = 0.125) <= 0.13021

Node 5295
(duration = 0.125) > 0.0863

Node 7635
(duration = 0.125) > 0.1224

Node 7715
(mean_pitch = 0.66667) <= 0.71354

Node 7716
(accidentals = 0.14286) <= 0.85714

Node 7717
(string+2 = 0.4) <= 0.48333

Node 7718
(pitch_jump+1 = -0.04167) > -0.05382

Node 7838
(pitch_jump+1 = -0.04167) <= -0.01215

Node 7839
(fret+1 = 0.45833) > 0.40625

Node 8021
(pitch_jump+2 = 0.0) > -0.03646

Node 8063
(fret-1 = 0.33333) <= 0.61458

Node 8064
(pitch_jump-1 = 0.10417) > 0.07292

Node 8188
(fret+1 = 0.45833) <= 0.5625

Node 8189
(accidentals = 0.14286) > -0.07143

Node 8195
(fret_jump-2 = 0.0) > -0.02083

Node 8203
(fret-1 = 0.33333) > 0.3125

Prediction: ø

(a) HS 1

Node 0
(mean_pitch = 0.625) > 0.58073

Node 5294
(duration = 0.125) <= 0.13021

Node 5295
(duration = 0.125) > 0.0863

Node 7635
(duration = 0.125) > 0.1224

Node 7715
(mean_pitch = 0.625) <= 0.71354

Node 7716
(accidentals = 0.14286) <= 0.85714

Node 7717
(string+2 = 0.4) <= 0.48333

Node 7718
(pitch_jump+1 = -0.02083) > -0.05382

Node 7838
(pitch_jump+1 = -0.02083) <= -0.01215

Node 7839
(fret+1 = 0.41667) > 0.40625

Node 8021
(pitch_jump+2 = -0.04167) <= -0.03646

Node 8022
(equal = False) <= 0.5

Node 8023
(accidentals = 0.14286) > -0.07143

Node 8033
(pc_wrt_tonic = 0.5) <= 0.75

Node 8034
(accidentals = 0.14286) <= 0.35714

Prediction: ↑

(b) HS 2

Node 0
(mean_pitch = 0.66667) > 0.58073

Node 5294
(duration = 0.25) > 0.13021

Node 10594
(pitch_jump-1 = 0.04167) > 0.01736

Node 11942
(pitch_jump+1 = -0.04167) <= -0.00868

Node 11943
(pitch_jump+1 = -0.04167) > -0.08681

Node 12207
(fret_jump+2 = -0.04167) <= 0.01042

Node 12208
(pitch+1 = 0.625) <= 0.73958

Node 12209
(pitch_jump+1 = -0.04167) > -0.04688

Node 12279
(fret_jump+2 = -0.04167) > -0.05208

Node 12395
(pitch_jump+2 = -0.02083) <= -0.00521

Node 12396
(pitch+2 = 0.60417) > 0.46875

Node 12400
(shorter = True) > 0.5

Node 12430
(duration = 0.25) > 0.17709

Node 12434
(pitch-2 = 0.625) > 0.41667

Prediction: ↑

(c) HS 3

Figure 6.20: Decision paths for the two wrong predictions in Highway Star (HS) as well
as the correctly predicted fourth bend (rightmost path).

124

6.7. Conclusions and Perspectives

Node 0
(duration = 0.125) <= 0.13021

Node 1
(mean_pitch = 0.75) > 0.52691

Node 2713
(duration = 0.125) > 0.0863

Node 5441
(duration = 0.125) > 0.1224

Node 5547
(mean_pitch = 0.75) > 0.71354

Node 7675
(pitch_jump-1 = 0.14583) > 0.00347

Node 8095
(pitch_jump+2 = 0.04167) > 0.01215

Node 8647
(num_notes = 0.16667) <= 0.25

Node 8648
(pitch_jump+2 = 0.04167) <= 0.07639

Node 8649
(pitch_jump-2 = -0.10417) > -0.30208

Node 8653
(pitch_jump-1 = 0.14583) <= 0.67361

Node 8654
(pitch_jump-2 = -0.10417) <= -0.04688

Node 8655
(pitch_jump-2 = -0.10417) <= -0.05729

Node 8656
(pc_wrt_tonic = 0.0) <= 0.875

Node 8657
(string-2 = 0.4) > 0.3

Node 8665
(pitch+2 = 0.75) > 0.71875

Node 8667
(fret_jump+2 = -0.125) <= -0.05208

Prediction: ↑

(a) JB 1

Node 0
(duration = 0.04167) <= 0.13021

Node 1
(mean_pitch = 0.625) > 0.52691

Node 2713
(duration = 0.04167) <= 0.0863

Node 2714
(num_notes = 0.16667) <= 0.25

Node 2715
(pitch_jump+1 = -0.02083) <= 0.00347

Node 2716
(pitch_jump+1 = -0.02083) > -0.05382

Node 3132
(equal = False) <= 0.5

Node 3133
(pitch_jump-1 = -0.02083) <= 0.01563

Node 3134
(fret_jump-2 = -0.04167) > -0.10417

Node 3162
(fret_jump+2 = -0.08333) <= -0.07292

Node 3163
(string_jump-2 = -0.2) <= -0.05

Node 3164
(string+2 = 0.6) > 0.35

Node 3168
(pitch_jump-2 = 0.0625) > 0.05729

Node 3174
(fret-2 = 0.54167) <= 0.5625

Node 3175
(shorter = True) > 0.5

Node 3177
(pitch_jump+2 = -0.04167) > -0.13542

Node 3179
(pc_wrt_tonic = 0.5) > 0.33333

Node 3181
(string+1 = 0.6) > 0.5

Node 3183
(fret-1 = 0.5) > 0.4375

Node 3185
(pitch-1 = 0.64583) <= 0.66146

Node 3186
(fret+1 = 0.58333) > 0.4375

Node 3188
(duration = 0.04167) <= 0.07291

Prediction: ø

(b) JB 2

Node 0
(duration = 0.04167) <= 0.13021

Node 1
(mean_pitch = 0.60417) > 0.52691

Node 2713
(duration = 0.04167) <= 0.0863

Node 2714
(num_notes = 0.16667) <= 0.25

Node 2715
(pitch_jump+1 = -0.04167) <= 0.00347

Node 2716
(pitch_jump+1 = -0.04167) > -0.05382

Node 3132
(equal = True) > 0.5

Node 3758
(beat_strength = 0.0625) <= 0.1875

Node 3759
(mean_pitch = 0.60417) <= 0.96875

Node 3760
(accidentals = 0.14286) <= 0.5

Node 3761
(fret_jump-2 = 0.125) > -0.10417

Node 3811
(pitch_jump-2 = -0.02083) <= -0.00521

Node 3812
(pitch_jump+1 = -0.04167) > -0.04688

Node 3818
(fret_jump-2 = 0.125) <= 0.14583

Node 3819
(pitch_jump-1 = -0.02083) > -0.09375

Node 3823
(pitch_jump+2 = -0.0625) > -0.07292

Node 3835
(string-1 = 0.6) > 0.5

Node 3859
(pitch-1 = 0.625) <= 0.72917

Node 3860
(pitch_jump-1 = -0.02083) <= 0.07292

Node 3861
(pitch_jump-2 = -0.02083) > -0.17708

Node 3865
(pc_wrt_tonic = 0.41667) > 0.375

Node 3867
(pitch_jump+2 = -0.0625) <= 0.03125

Node 3868
(pitch_jump-2 = -0.02083) > -0.09896

Node 3874
(pitch_jump+1 = -0.04167) <= -0.01042

Prediction: ø

(c) JB 3

Figure 6.21: Decision paths for the three wrong predictions in Jailbreak (JB).

125

7

Guitar Chord Diagram Suggestion

“It’s just a pretty chord you know, it’s so versatile.”

Tuck (2025)

Contents
7.1 Suggesting Guitar Chord Diagrams . 128
7.2 Methodology . 130
7.3 Data . 131
7.4 Experiments . 136
7.5 Discussion . 141
7.6 Conclusion . 142

Choosing a position on the fretboard to perform a chord, depending on context, re-
quires specific skills for guitarists who play accompaniment parts, A C major chord can
for instance be played, without inversions, in 5 different positions on a guitar in standard
tuning,1 each with different biomechanical and timbral characteristics. In this chapter,
we propose a model that suggests a chord diagram,2 given a chord label and the previ-
ous notated diagram. The contributions of this work are as follows: (i) a context-aware
approach for guitar chord diagram suggestion; (ii) a set of metrics to assess performance
in this task and characterise texture for guitar chord diagrams; (iii) openly released code
and data for all of the above. The results of this chapter have been published in:

“Guitar Chord Diagram Suggestion for Western Popular Music”
Alexandre D’Hooge, Louis Bigo, Ken Déguernel, Nicolas Martin.

Proceedings of the 21st Sound and Music Computing Conference (SMC), 2024.
(D’Hooge et al. 2024a)

1https://www.scales-chords.com/chord/guitar/C, accessed in June 2025.
2In this chapter, we use chord diagram as a metonym to chord position to avoid any ambiguity from

using the word “position”.

127

https://www.scales-chords.com/chord/guitar/C

Chapter 7. Guitar Chord Diagram Suggestion

5

Am
X O O

Am

Figure 7.1: Two guitar chord diagrams for an A minor chord, and a diagram above a
tablature. A number on the side of a diagram indicates the “root fret” of that diagram,
i.e. the lowest fret used.

7.1 Suggesting Guitar Chord Diagrams

A large part of theWPMguitar repertoire is available as “songbooks”which contain lyrics
of songs with the corresponding chords (Tostig 2025). However, like single notes, a chord
can be played inmultiple ways on a guitar’s fretboard, each position having its own pitch,
timbral and biomechanical specificities. To help guitarists use appropriate chord posi-
tions, songbooks will usually contain chord diagrams.

Definition (Chord Diagram, Polin 2022) A chord diagram graphically conveys the section of
the neck on which the chord is placed. In a diagram, each note fretted is represented by a dot [...].
The Xs and Os situated at the top of the neck show you if the string beside which the symbol appears
should be played “open” or not. BOOK-OPEN

Chord diagrams can also be used on top of tablature notation to help players know what
fingerings to use at a glance, before reading the details of the tablature. An example of
those chord diagrams is shown Figure 7.1. The first diagram presented contains both an
open (0) and a muted (x) string and is presumably one of the most common positions
used to perform an A minor chord. It is typically used by beginners for its simplicity, and
in pop music which tends to favour the resonance of open strings. The latter is a barre
chord and is harder to play, but its hand position can be shifted along the fretboard to
directly playminor chordswith a different root note. Chord positions can also be reduced
to a text format, compatible with ASCII tablatures, with a number indicating which fret is
played on each string. For instance, the chord diagrams from Figure 7.1 can respectively
be annotated as x.0.2.2.1.0 and 5.7.7.5.5.5.

In this chapter, we propose the task of chord diagram suggestion to assist composition.
The principle is to provide guitarists with diagrams suggestions so that they can explore
new ways of playing chords, rather than use a reduced number of positions they already
master. For the suggestions to be useful, we suggest taking into account the previous
diagram (Figure 7.2). That way, we can ensure that two consecutive chords share similar
musical characteristics and that the transition from one another is not too difficult.

128

7.1. Suggesting Guitar Chord Diagrams

3

G

7

B

?

Figure 7.2: Summary of the diagram suggestion task. The label of the next chord as well
as the previous diagram are known.

3

X

Cm
X O O

C

2

X

B
O O O

G

8

Cm

8

C

7

B

3

G

Ultimate
Guitar

Live
Performance

Figure 7.3: Diagrams presented for Creep by Radiohead, on Ultimate Guitar (top). Those
are not the chords used by the guitarist in live performances (bottom).

Chord diagram research has so far been focusing on playability (Sawayama et al. 2006;
Vélez Vásquez et al. 2023; Wortman et al. 2021) with limited ability to take into account the
relationship between consecutive chords. There have been studies on generating chord
sequences (Dalmazzo et al. 2024b), and voicings can also be generated (Dalmazzo et al.
2024a) or adapted to a new musical style (T.-P. Chen et al. 2020). However, while voicings
specify how notes in a chord are organised, exact chord diagrams are not included in
those pipelines. We can see similar problems in the suggestions of themost popular guitar
learning services, which only provide catalogues of standard chord diagrams (Figure 7.3).
While such an approach provides agency to the user, itmight also drive beginners towards
using the same diagrams over and over again. Besides, playing a song in the “wrong”way
can be more complex, as in Creep all chords are played with the same barré shape moved
along the fretboard which makes it easier playing the repetitive arpeggio pattern of the
Intro.

129

Chapter 7. Guitar Chord Diagram Suggestion

A sus4

Previous

Diagram

Tensor

B
a
ss N

o
te

 V
e

c
to
r

C
h
o
rd

 N
a
tu
re

 V
e

c
to
r

M
o
d
e
l

Suggested
diagram

D/A

Figure 7.4: Summary of the proposed approach for chord diagram suggestion.

Bass Note

Vector

Chord Nature

Vector

D E AC F
 G
 B

X O O

Asus4

Figure 7.5: Computed vectors for an Asus4 chord.

7.2 Methodology

In this chapter, we aim at suggesting a diagram dC for a chord, based on its label ℓC and
the previous diagram dC−1. While one could imagine using more past information and
looking at = chords in the past, this chapter present a first experiment in the task of di-
agram suggestion and aims at showing that looking at just one previous chord already
improves the quality of the diagram suggested. In this section, we present the model we
use for diagram suggestion, as well as the vector representation for the input data. We
then present the final model architecture that was implemented.

7.2.1 Proposed Model

The task consists in finding the diagram which probability is highest in the provided
context. To do so, we convert the chord labels and diagrams into vectors and train anMLP
on predicting a chord diagram, given a chord label and the previous chord diagram. For
each chord label, we first extract its bass note, which might be different from its root note
in case of inverted chords (also called slash chords in WPM). This bass note information
is then converted into a one-hot vector of size 12 (where enharmonic equivalents of the
twelve-tone equal temperament are merged together) we call the Bass Note Vector. Then,
the pitch-class content of the chord is converted into amany-hot vector of size 12: theChord
Nature Vector (see Figure 7.5). The complete pipeline we propose for the task of diagram
suggestion is represented Figure 7.4.

130

7.3. Data

The diagrams are converted into many-hot arrays of size [6, 25+1], each row account-
ing for a string (6 on a standard guitar) and its 25 frets (counting the open string as a
zeroth fret). An additional per-string coefficient is added to account for muted strings.
This ensures that all vectors always have a non-zero value for a string, which ultimately
permits normalising predictions and using them as probabilities. In summary, input data
contains 180 values for the previous diagram dC−1 (6× 26 values) and the new chord label
ℓC (2 × 12 values), from which the bass note and chord nature vectors are computed. As a
result, the model outputs 156 probabilities, 26 per string, for dC .

Finally, to measure to which extent adding information about the previous diagram
improves chord diagram suggestion, we define the baseline as the same model, but re-
moving information about dC−1. In that case, the baseline model takes only 24 values as
input, but still returns 156.

7.2.2 Implementation Details

We use a fully connected neural network as an architecture (see section 2.3) for both the
baseline and the full suggestion model. The hyperparameters of the two architectures
were tuned through a grid search to maximise performance. We report here the final
configurations that were obtained.

BaselineModel. The best performance of the baselinemodel was obtainedwith no hid-
den layer, i.e. a regular perceptron. This means that the baseline model is entirely repre-
sented by a matrix of its weights of size (24, 156) and a bias vector of size (1, 156), adding
up to 3 900 parameters.

Full Model. The full model performed best with one hidden layer of size 150 with an
identity activation function before the output layer. It therefore has two weight matrices
of size (180, 150) and (150, 156), respectively, and bias vectors for each with 150 and 156
coefficients. This model therefore has 50 706 parameters.

Training. Performance during training is evaluated with a BCE loss on the output, ob-
tained after a sigmoid activation function, and string-wise normalisation of the predic-
tions (to enforce a single prediction per string). Training uses the Adam optimiser with
(�1 , �2) = (0.9, 0.999), and a learning rate � = 0.001. The training is stopped whenever
the validation loss does not improve by at least � = 0.001 for two consecutive epochs.
Full training of the model can be done in a few minutes on a standard laptop Central
Processing Unit (CPU).

7.3 Data

This work on diagram suggestion marked a transition from using mySongBook to using
DadaGP as a dataset. In this section, we describe how chord pairs were extracted from

131

Chapter 7. Guitar Chord Diagram Suggestion

both datasets and conduct statistical analyses on the most common labels and diagrams
encountered. We finally discuss the data augmentation strategy implemented to remove
any bias towards specific key signatures.

7.3.1 Corpora

This study is conducted on both DadaGP and MSB. The .gp file format of these datasets
allows including chord diagrams aligned with the tablature data. We only use tracks
which contain chord diagram data, reducing the datasets to 2 766 (10 %) and 520 (25 %)
tracks for DadaGP and MSB respectively. From these tracks, we extract chord pairs that
occur within a 2 bars interval and finally keep one occurrence of each unique transition
(ℓC−1 , dC−1) → (ℓC , dC) per track. By doing so, we acknowledge the fact that a chord transi-
tion can be more common in a given repertoire and occur in many songs, but we remove
duplicate transitions that are inherent to the repetitive nature of WPM. This processing
step leaves us with 31 321 and 7 365 unique diagram transitions for DadaGP and MSB,
respectively. While those numbers can already seem high, analyses of the datasets sug-
gested that even more diagram pairs could have been extracted from the tablatures. The
main limitation is that transcribers do not always take the time to explicitly engrave dia-
grams in the tablature they write. Indeed, a common observation on tablatures was that
chord labels would be written, but the corresponding diagrams were not specified. The
data could thus be greatly expanded by developing a way to derive chord diagrams from
tablature excerpts. There might be situations where it is straightforward (Figure 7.6a) but
there are also many times where it is not as clear (Figure 7.6b) because possible ornamen-
tations or out-of-diagram notes can be used. It can also happen that the chords played on
the guitar are “missing” some notes that are played on other instruments. Overall, musi-
cal context is key in determining what really is the correct chord diagram for an excerpt.
While a human annotator might be able to decide what diagram is appropriate based on
such context, the variety of situations that can occur make the automatic recognition of
diagrams from tablatures a non-trivial task, we leave it for future work.

7.3.2 Statistical Analyses

In this subsection, we provide detailed statistics of the chords used in the datasets. This
analysis aims at emphasising the bias towards most common diagrams and key signa-
tures. Furthermore, because of the considered repertoire, and the large amount of pop,
rock, andmetal tracks, some chord types aremore common than others. Nevertheless, we
also want to underline that this bias is not at the expense of variety, even though it results
in a highly unbalanced distribution of chords. A first dimension to analyse on chords is
the root note they are built on. Figure 7.7 shows that the distributions of root notes are
similar between datasets, with more than half the chords having A, G, D, C or E as root.
Perspectives include comparing those distributions with chords used in WPM in general
to determine whether this bias is specific to guitar or a bias of rock and metal songs.

132

7.3. Data

(a) (b)

Figure 7.6: Two tablature excerpts where it would be straightforward (left) or ambiguous
(right) to find the chord diagram from the notes played (and eventually the chord label).
In the second example, more context would be required to confirm that this chord is a B
minor and not a possible inversion of a Gmaj7, i.e. whether the 3rd string in the diagram
should be with a note on the 4th fret or an open string.

Figure 7.7: Distribution of the root notes of chords in both datasets.

After root notes, we can also compare chord natures. In both datasets, major chords
(M) are the most common (Figure 7.8), followed byminor chords (m) and power chords (5).
The tail of the distribution then includes more complex chords, like seventh, suspended
or added-tone chords. The distribution of chord natures is in fact highly unbalanced to-
wards the three first classes, which might make the suggestion of diagrams for less com-
mon chords a bigger challenge. Besides, this plot shows that notation between files can
vary,MSB containing 7M andmaj7 labels that are both representingmajor seventh chords.
Those notation discrepancies are not an issuewhenwe convert the chord labels to vectors,
but they illustrate that identical chords can be labelled differently. It is worth noting that
those labels distribution might not be entirely accurate, as it was observed (especially in
the DadaGP dataset) that chords tend to be wrongly labelled. For instance, we observed

133

Chapter 7. Guitar Chord Diagram Suggestion

Figure 7.8: Distribution of the 15 most used chord natures in each dataset.

Figure 7.9: Word cloud representation of chord labels in DadaGP (left) and MSB (right)

in metal songs that power chords are often labelled as major chords, possibly because
chords are considered to be power chords “by default” in this genre. We also noticed that
slash chords were not always labelled with the correct bass note. In our work, we decided
to trust chord labels nonetheless, because most are still correct, but future work could
explicitly verify chord labels to make the system more robust to transcription errors.

Word cloud representations of the chord labels are also provided (Figure 7.9) to give
an overview of the combined root notes and chord natures. Overall, one can observe that
the comments made on root notes and chord natures separately still apply to complete
chord labels.

While chord labels are already numerous and varied, even more variety comes with
the different diagrams that can be used for each label. One can get a sense of it through the
median number of diagrams per label: 11.5 for MSB and 24 for DadaGP. This observation
illustrates the number of possibilities when suggesting a diagram for a chord, while also
showing how a larger dataset comeswithmore variety. This variety of data is particularly
noticeable on the most common chords, G Major having 33 and 108 different diagrams in
MSB and DadaGP respectively. The variety of diagrams observed comes mostly from the

134

7.3. Data

X O O O

G

G D G B G

X O O O X

G

G D G B

O O

G

G B D G D G

3

G

G D G B D G

O O O

G

G B D G B G

7

X X O

G/D

D D G B

7

X X X

G/B

B D G

7

X X X

G5

D G D

X O O

G/B

B D G D G

3

X X X

G5

G D G

Figure 7.10: 5most commondiagrams for aGmajor chord inDadaGP (top), and 5 random
diagrams of chords that are wrongly labelled as “G” (bottom). Below the diagrams are
the notes played on each string. The G major chord is supposed to contain the notes G, B
and D. The bottom row indicates the correct label of each chord.

fact that transcribers might write some strings as muted instead of open or played, which
can yield different diagrams for the same hand position on the fretboard. The staggering
amount of diagrams in DadaGP comes both from the same issue, worsened by the size
of the corpus, and occasional incorrect labelling. The 5 most common G major diagrams
from DadaGP, as well as 5 diagrams wrongly-labelled as “G” are presented Figure 7.10.

7.3.3 Data Augmentation Strategy

The previous statistical analyses showed that a wide variety of diagrams and labels are
represented in both datasets. However, some chords are over-represented andmight pre-
vent the model to suggest less common diagrams. We want to improve the robustness of
the proposed approach and reduce its bias towards key signatures that are more frequent
in the datasets so that the model can suggest diagrams even for rare tonalities and chord
natures. To do so, we apply the augmentation technique from McVicar et al. (2015). For
each chord pair, both diagrams are shifted one fret down and the chord labels transposed
one semitone down accordingly, until one of the diagrams contains an open string. Simi-
larly, chord pairs are also shifted one fret up until reaching the 15th fret. This maximum
is chosen based on the highest diagrams observed in data and to prevent the model from
suggesting chords on higher frets, which are uncommon in rhythmguitar. Using this aug-
mentation strategy makes the training sets more than three times larger. We also confirm
with Figure 7.11 that the augmentation strategy allows to reduce pitch class imbalance,
even though some notes are still encountered more often than others.

135

Chapter 7. Guitar Chord Diagram Suggestion

C C# D D# E F F# G G# A A# B
Pitch Class

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fr
eq

u
en

cy

Original
Augmented

Figure 7.11: Pitch class histograms of the DadaGP training set chords before and after
data augmentation.

7.4 Experiments

As we illustrated previously for the G major chord, there can be multiple possible dia-
grams with only one note changing. If the model were to suggest 3.2.0.0.3.3 instead
of 3.2.0.0.0.3 for a chord pair in the dataset, the difference is minimal and should
not be considered an error per se. To account for those possible situations, we introduce
several new metrics to evaluate the quality of the diagrams suggested, and present the
results of our model according to those metrics.

7.4.1 Evaluation Metrics

Like most tasks on probability estimation, we can evaluate the performance of the model
through its Precision (P), Recall (R) and F1-score. However, in the case of diagram sugges-
tion, it could be argued that the so-called ground-truth is not the only acceptable diagram.
For this reason, we propose hereafter several automated metrics to account for the possi-
ble differences that can be encountered between the suggested diagrams and the reference
ones.

Pitch Metrics. Similarly to Wiggins et al. (2019), we want to measure to which ex-
tent the suggested diagrams include all pitch-classes of the target chord labels. For this
purpose, we compute for a chord diagram 3 the set of pitch classes S%(3) it contains and
compare it with the pitch classes associated with the chord label ℓ : S%(ℓ).
From these sets, we can compute Pitch Precision (PP), Pitch Recall (RP) and a Pitch F1-
score (F1P). For each pitch class ?8 from the expected ones S%(ℓ), a True Positive means
that ?8 ∈ S%(3), a False Negative is when ?8 ∉ S%(3) and a False Positive is when there
is a pitch class ? 9 in the diagram S%(3) with ? 9 ∉ S%(ℓ). True Negatives are undefined
with our definition because we base our values on pitch classes that are either in S%(3) or
S%(ℓ). We thus set the amount of True Negatives to 0 in all our formulae.

Fretboard Metrics. Drawing insights from Wiggins et al. (2019), we also define met-
rics to measure how similar the model suggestions are to the reference diagrams, when

136

7.4. Experiments

comparing them on the fretboard. Similarly to the pitch metrics, we compute the set of
string-fret (SF) pairs on the predicted diagram and compare them with those of the ex-
pected one. We can use those sets to compute String-Fret Precision (PSF), String-Fret Re-
call (RSF) and the corresponding F1-score (F1SF). The definitions are equivalent to those
of pitch metrics.

Detect Unplayable Diagrams. To evaluate how often the model can return an un-
playable diagram, we implement a playability metric inspired by Wortman et al. (2021).
In this paper, the authors define an anatomical score to evaluate the ease of playing a chord.
They first define a score for pairs of fingers to determine if the distance between them is
comfortable:

(�(G, 0, 1) =


1 + (G − 0.990)3 G < 0,

1 −
(

G−0.990
1.011−0.990

)2
G ≥ 0.

(7.1)

with G the distance between two fingers, and 0 and 1 the minimum and maximum com-
fortable distance values, respectively. Those comfortable values were obtained from a
“model of the player’s hand” and for instance state that the comfortable range for the dis-
tance between the index finger and middle finger is between 5 mm and 80 mm. In the
original paper, users can adjust the comfortable ranges to better model their own hand,
but we use the default values of the paper for our metric. From the finger-pairs scores,
the final anatomical score of a diagram 3 can be measured:

�((3) =
∑=
8=1

∑=
9=8+1 (�(G8 9 , 08 9 , 18 9)

max(=2 − =, 1) (7.2)

with = the number of fingers used for playing the chord, and G8 9 , 08 9 , 18 9 the observed
distance and the min and max of the comfortable distance range between fingers 8 and 9.
This metric allows us to detect unplayable diagrams by their low anatomical score. We
settled for an anatomical score threshold of C = 0.2 after manual analysis of anatomical
scores and playability of the model’s suggestions.

Ease of Transition. While it is necessary that the suggested diagrams are playable,
playability of chord sequences also depends on the chord transitions involved. To assess
the ease of the transitions suggested, we also implement the chord change metric pro-
posed in Yazawa et al. (2014). This metric analyses the transition between two diagrams
through two movements: the wrist movement <F , which is obtained as the absolute dif-
ference of the index finger fret in the two chords; and the fingers movement < 5 , defined as
the Manhattan distance between the positions of each finger. We define the final value
for the ease of transition as:

� =
1

1 + <F + < 5
(7.3)

� is highest (1) when the chord change is easy and close to 0 when the transition is hard.

The computation of the last twometrics requires to knowwhich fingers of the fretting
hand are used. This information was derived using a naive heuristic based on obser-
vations of the most common chords in the datasets. For these chords, the index finger

137

Chapter 7. Guitar Chord Diagram Suggestion

X X

1 2 3 4
(a) Fm7

X X

3 2 4 1
(b) C7M

5
X X

1 3 2 4
(c) Dm7Z5

OOO

3 2 4
(d) G

3

1 3 4 2 1 1
(e) G

Figure 7.12: Guitar Chord Diagrams with possible fingerings below. Fingers are num-
bered as such: 1 = index, 2 = middle, 3 = ring, 4 = little.

is always on the lowest fret (closest to the guitar head) and the lowest string played on
that fret. Then, the middle, ring and little finger follow, ordered from lowest to highest
fret and lowest to highest string. A few examples to illustrate this principle are provided
Figure 7.12. Those rules work well with chords using four fingers, but might be wrong
when only three fingers or less are used. The G open chord illustrates this limitation (Fig-
ure 7.12d) because the most common shape usually does not use the index finger. Our
heuristic also does not account for chords with a barréwith another finger than the index.
Future work could benefit from implementing existing work on chord fingering predic-
tion to better estimate the fingers used (A. M. Barbancho et al. 2012; Hori 2021).

7.4.2 Results

Experiments were performed by applying a 60-20-20 train-validation-test split to both
datasets and average the results over four different splits. Final results are presented Ta-
ble 7.1. For fair comparison with the baseline, that does not take the previous diagram
dC−1 into account, chord pairs which have identical ℓC and dC but different dC−1 are consid-
ered duplicates and skipped during testing. The data augmentation strategy presented
earlier is used for the full model but not for the baseline as it decreased its performance.
This observation suggests that the results of the baseline should be taken with care, as
prediction quality might decrease significantly on key signatures less represented in the
training set. The first observation from Table 7.1 is that the proposedmodel surpasses the
baseline on standard and string-fret F1-scores. However, both implementations perform
well on pitch metrics, showing that the proposed diagrams contain overall the expected
pitch content. There is also a significant improvement over the baseline on string-fretmet-
rics, suggesting that information from the previous diagram helps the model choose the
correct fretboard area.

Unplayability and transition ease of the ground-truth and the models’ prediction are
shown in Table 7.2. It can be observed that the proposed model suggests unplayable dia-
grams 15% of the time, which is moderately more than the baseline, with a clearer gap on
DadaGP. As a reference, 3-4% of the ground-truth diagrams are deemed unplayable, most
of them because the metric does not recognise the barré technique with other fingers than

138

7.4. Experiments

Table 7.1: Results of the baseline and the full model on MSB (top) and DadaGP (bottom).
Precision and Recall measures were omitted for clarity.

F1 F1P F1SF

M
SB Baseline 0.40±.01 0.87±.01 0.46±.04

Full Model 0.72±.02 0.90±.01 0.67±.02
D
G
P Baseline 0.38±.01 0.88±.00 0.45±.02

Full Model 0.63±.01 0.88±.01 0.60±.02

Table 7.2: Ratio of unplayable diagrams and average ease of transition �measure on MSB
(top) and DadaGP (bottom).

Unplayable diagrams Ease of Transition

M
SB

Baseline 0.12±.02 0.15±.02
Full Model 0.15±.03 0.21±.03
Test Set 0.03±.02 0.31±.02

D
ad

aG
P Baseline 0.09±.01 0.13±.01

Full Model 0.15±.01 0.19±.01
Test Set 0.04±.01 0.29±.01

the index (Figure 7.13). However, the proposed diagrams permit slightly easier transi-
tions than the baseline, which is probably again due to the context information that keeps
the suggested diagram in the same fretboard area, limiting wrist and fingers movements.
Nonetheless, even ourmodelwith context information has a 0.1differencewith the transi-
tion ease measured in the datasets, showing that the transitions are still too complicated.
Examples of simple and complex transitions are shown Figure 7.14. Nonetheless, the
evaluations of the transitions should be taken with care since the heuristic that predicts
fingerings for chords does not take context into account. While a guitar player would
usually look ahead and adapt its current hand shape to incoming chords, our heuristic
does not, and can cause the estimated transitions to be more complex than they should
be.

Overall, one can note that performance is similar on MSB and DadaGP. We still de-
cided to share results on both datasets because we deemed relevant the fact that the pro-
posed approach improves diagram suggestion even when training on data where chords
are not always labelled correctly. We also observe that a larger amount of chord pairs with
an unbalanced distribution does not significantly increase the bias towards common dia-
grams.

139

Chapter 7. Guitar Chord Diagram Suggestion

4
X

2 1 3 3 3

4
X X X

1 2 4
(a)

2

(b)

Figure 7.13: Two diagrams from the dataset (left) and one generated by the full model
(right) detected as unplayable with our metric. The two from the datasets are actually
playable with the provided fingerings, but are not supported by our heuristic.

O O O O

1 2

O O O

1 2 3

(a)

O O O

2 3 1

2

X O O

1 3 4

(b)

Figure 7.14: Easy (left) and hard (right) chord transitions.

Table 7.3: Texture metrics for chord suggestions of the proposed model (Full), the base-
line (BL) and the corresponding test set (data). �(.) denotes the absolute difference of the
previous metric between the two chords of a transition. Bold values are the ones signifi-
cantly closer to the reference dataset.

DadaGP MSB
BL Full Data BL Full Data

Muted notes 0.15 ± .01 0.27 ± .01 0.28 ± .01 0.32 ± .02 0.32 ± .01 0.33 ± .01
�(.) 0.20 ± .01 0.08 ± .00 0.10 ± .01 0.18 ± .02 0.08 ± .01 0.08 ± .01

Open Strings 0.25 ± .01 0.19 ± .02 0.20 ± .01 0.20 ± .01 0.17 ± .02 0.20 ± .02
�(.) 0.22 ± .01 0.15 ± .01 0.17 ± .00 0.19 ± .01 0.15 ± .01 0.15 ± .01

String Centroid 0.53 ± .00 0.54 ± .01 0.55 ± .00 0.60 ± .01 0.59 ± .01 0.59 ± .01
�(.) 0.10 ± .00 0.05 ± .00 0.06 ± .00 0.11 ± .01 0.05 ± .01 0.06 ± .01

Unique Notes 0.61 ± .00 0.71 ± .00 0.80 ± .01 0.68 ± .01 0.72 ± .01 0.80 ± .01
�(.) 0.21 ± .01 0.13 ± .00 0.12 ± .00 0.20 ± .02 0.13 ± .01 0.11 ± .01

Diagram Texture Consistency Finally, we propose to define and measure chord texture
to determine if the suggested chord share common timbral characteristics. While texture
is usually defined from audio (Lu et al. 2004), it can also be defined from symbolic data
(Couturier 2024; Giraud et al. 2014). Guitar chords have different texture depending on
whether they are played as open chords or barre chords higher on the fretboard, because
strings are going to resonate differently. Likewise, chord voicings, depending on which
note they repeat and where there are played on the fretboard, can sound different. We
thereforewant to evaluate if the texture change observedwhen using a suggested diagram
is similar to the one from the reference. To measure this texture, we implement some
of the sound quality measures of Wortman et al. (2021) and variations of them. More

140

7.5. Discussion

precisely, we extract for each diagram: the ratio of open strings; the ratio of muted strings;
the string centroid; and the ratio of unique notes i.e. counting only once notes that are
repeated on several octaves. We also compute the difference of these metrics from one
chord to the next to assess how consistent they are through a transition. The results are
reported in Table 7.3, all values go from 0 to 1. The first observation we can make is that
the full model is closer to the texture of the reference data than the baseline on all metrics
except the amount of open strings compared to the MSB dataset. We also notice that
the performances of the full models trained and tested on DadaGP and MSB are similar.
However, this experiment does show slight differences in the datasets, on the amount of
muted notes and the string centroids in particular. Those differences might be due to
discrepancies in the musical style distribution of each dataset. The biggest difference in
the results is the improvement of the baseline’s performance on individual chord metrics
for MSB, which could be due to the fact that the dataset is smaller and less varied. From
the � values for both datasets, it appears that the metrics are rather consistent from one
chord to the next. We can also observe that the baseline trained on DadaGP tends to play
too many notes on each chord (lower ratio of muted notes) probably by repeating them
on different octaves (lower ratio of unique notes). Finally, an encouraging result is that
the model using context suggests diagrams with a texture similar to the ground-truth
(lower � values). It should however be noted that it also tends to repeat more notes than
necessary, while still missing some.

7.5 Discussion

In this chapter, we confirmed that using information from the past chord allows to sug-
gest diagrams that are closer to the expected reference ones, both in terms of texture and
location on the fretboard. However, a few limitations still exist. First of all, the MLP
we use for diagram suggestion does not ensure that the output diagram is playable. In
fact, we observed that the model would sometimes merge two different diagrams of a
same chord, resulting in an unplayable diagram that could span over a large part of the
fretboard and unrealistic fingerspans for most players. Future work should consider po-
tential solutions to address this limitation, for instance by training the model with a loss
that explicitly penalises unplayable diagrams. In a more practical sense, one could also
simply imagine conducting a post-processing step, and forcing the model to suggest a
new diagram if the first one is unplayable. Finally, it might also be worth considering a
multi-criteria optimisation approach rather than a neural network.3 It could indeed be
more efficient to use a diagram finder system like Wortman et al. (2021) that can only
suggest known chord positions, and design an optimisation model that can choose be-
tween possible diagrams to guarantee texture continuity, playability, stylistic consistency,

3I am indebted to Sean Luke I met at SMC 2024 for the idea.

141

Chapter 7. Guitar Chord Diagram Suggestion

etc. Such an approach would also have the advantage to be applicable to full chord pro-
gressions instead of chord pairs. Indeed, while the model we presented in this chapter
can technically be used repeatedly to suggest diagrams for as many chords as necessary,
only one previous chord is taken into account when making suggestions. Because of this
limited past context, there is a risk of the model “drifting” and that suggestions after 4
or 5 iterations lack consistency with the first chord. This can be an issue because of the
repetitive nature of WPM, where chord progressions are usually evolving in cycles and
not linearly in time.

Finally, we observed when analysing the datasets that chords are not always labelled
correctly (Figure 7.10), or that diagrams can sometimes be missing from the tablatures.
As we discussed, developing methods to automatically annotate tablatures with diagram
information, or correct chord labelling, could be beneficial to a diagram suggestion sys-
tem. However, simply correcting chord labelswithout further analysis could be amistake.
Indeed, we mentioned that metal songs could sometimes have power chords labelled as
major chords, or that inverted chordswere not always labelled consistently in the datasets
(andDadaGP in particular). If those “wrong” labels arewhat guitar players use because it
makes sense in context, maybe a diagram suggestion model should occasionally suggest
inverted chords or slightly different chord natures than the one originally asked for. In
other words, while correcting chord labels as music theory dictates might be tempting, it
might not be necessary and maybe even detrimental for a system that aims at suggesting
diagrams to WPM guitarists, who develop their own idioms through their own practice-
based culture that may differ from modern Western music theory (L. Green 2002).

7.6 Conclusion

In this chapter, we have shown that chords used in the guitar WPM repertoire are varied
but also highly unbalanced, with some common chords and diagrams being used much
more frequently than others. From this observation, we proposed a new approach to sug-
gest guitar chord diagrams in the context of WPM. We showed with several newly intro-
duced metrics that adding context information through the previous diagram improves
the quality of the suggestions while also maintaining a better consistency of texture be-
tween chords. All experiments were conducted on two datasets, one proprietary and
one public, to further guarantee the validity of the conclusions. The Python implemen-
tation is openly available under a GPL-3.0 license, along with a demonstration website,
at algomus.fr/code. All diagrams observed for each chord label are also released openly
under an ODbL license, along with the extracted chord pairs. The diagram suggestion
model we introduced could be used as a first step towards rhythm guitar tablature con-
tinuation (D’Hooge et al. 2023b). In the next chapter, we present an approach to generate
picking patterns that, combined with diagram information, can be used to conduct com-
plete rhythm guitar tablature continuation.

142

algomus.fr/code

8

Picking Pattern Generation for Rhythm
Guitar Tablature Continuation

“Just pick up a guitar that sounds so good and feels so good and then play chords that
sound perfect, I could do that all day, it just makes me happy.”

Ian (2018)

Contents
8.1 Picking Pattern Generation . 144
8.2 Data Preparation . 151
8.3 Transformer Model Training and Inference Details 153
8.4 Quantitative Results . 154
8.5 Subjective Evaluation . 157
8.6 Conclusion . 166

Suggesting chord diagrams like presented in the previous chapter is a way to assist
guitarists who play accompaniment parts. However, while this might suggest chord po-
sitions for comping (A. Green 2017), it is not sufficient for guitarists who practise or com-
pose with tablatures. In this chapter, we study the task of picking pattern generation that,
combined with chord diagrams information, can be used to propose possible continua-
tions to an existing rhythm guitar promptmeasure. To do so, we present a rule-based and
a GPT-based model, and compare their performance through quantitative metrics and a
subjective user study.

143

Rhythm Guitar Tablature Continuation

?

Figure 8.1: Excerpt of a rhythm guitar tablature and summary of the task studied. Chord
positions are specified with chord diagrams above the score.

8.1 Picking Pattern Generation

In this section, we introduce the task of picking pattern generation by first presenting
context and motivation for this task as well as defining picking patterns. The objective of
this picking pattern generation is to conduct rhythm guitar tablature continuation given
a prompt measure and a set of conditioning controls. This section also introduces the
conditioning controls and texture metrics used as input. We conclude by presenting the
two architectures used in this chapter: a transformer-based model as well as a rule-based
model.

8.1.1 Definitions

TaskPresentation This chapter proposes a new approach to generate rhythmguitar tab-
lature excerpts from a chord progression (Figure 8.1). We suggest splitting this generation
into two steps: i) predicting chord positions for choosing an exactway to play the chord pro-
gression, ii) generating a picking pattern that contains information on what strings should
be played at each time. In this chapter, we focus on picking pattern generation and as-
sume that chord diagrams are available, either provided by the composer or generated
with the approach presented in chapter 7. Our approach is based on the observation that
the accompaniment tracks in guitar popular music, are often repetition-based (Adkins et
al. 2023; Margulis 2014). In particular, when using a tablature notation software to write
accompaniment parts, guitar players typically use copy-pasting tools and then apply mi-
nor edits to the pasted sections to add variations (Bacot 2023). The approach presented in
this chapter aims at suggesting alternatives to this copy-pasting practice that might lead
composers to introduce more variation into their work.

144

8.1. Picking Pattern Generation

Figure 8.2: Tablature excerpts (left) and their corresponding picking patterns (right). The x
symbol signifies that no specific fret (and thus no pitch) is defined for a note in a picking
pattern. Pitched notes are not distinguished from dead notes in our approach.

Picking Patterns As chord diagrams provide information regarding the fretting hand,
picking patterns inform on the role of the picking hand. This hand is not completely inde-
pendent from the first one because guitar players will usually only play strings that are
pressed down by the fretting hand (unless they need to play dead notes or open strings).
Nonetheless, there are still several degrees of freedom to choose which strings to strum
and with which rhythm. For instance, the same A minor chord (x.0.2.2.1.0) could be
strummed fully on quarter notes (Figure 8.2, bottom) or arpeggiated on 8th notes (Fig-
ure 8.2, top), depending on context.

8.1.2 Texture and Conditioning Controls

We aim at generating a possible continuation of a single measure provided as a prompt,
using picking patterns. A summary of the full pipeline is represented Figure 8.3, and the
next paragraphs present the different elements of this figure.

The prompting measure is already a way in itself for guitar players to have some con-
trol over the generated strumming pattern. Indeed, as with any architecture that relies on
priming, the generated content should be consistent with the priming sequence, keeping
some of its textural characteristics intact. This is however limited in its control possibili-
ties, which iswhywe present below our approach to guide the generation through texture
control values. The main difference with simple priming is that the provided texture can
drive the model towards generating measures that are unexpected or different from the
prompt by driving the model to change rhythmic or note densities for instance (S.-L. Wu
et al. 2023). These texture variations can generally be observed in WPM (Bimbot et al.
2016) and might be more desirable than being over-consistent with the priming measure.

145

Rhythm Guitar Tablature Continuation

1-bar prompt

Chord Progression

(with diagrams and chord onsets)

Texture Controls

± x.xx

± y.yy

± x.xx

± y.yy

± x.xx

± y.yy

Picking

Pattern Generator

X O O

C D F

Bar number

mod.2 and

mod.4

Tablature

Content

Picking Patterns Suggestion

Tablature Output

X X O

Figure 8.3: Overview of the picking pattern generation pipeline. The final tablature is
obtained by combining the chord diagrams with the generated picking patterns. The tex-
ture controls are optional because the model can generate patterns even if all controls are
equal to zero, it simply means that the texture should be constant across the generation.

Tablature Texture metrics and distances WPM is heavily based on repetition and this
can be observed within tablatures (Adkins et al. 2023), but there can be variations of mu-
sical characteristics within looping excerpts nonetheless. Building upon the definitions
of texture for guitar chord diagrams presented in section 7.4.2, we extend the definition
of texture to tablatures. We also adapt metrics from Couturier et al. (2023), where the
authors introduce vertical and horizontal texture measures for piano music. Those met-
rics capture information about the pitches used (vertical axis in standard notation) or the
rhythmic density (horizontal axis in standard notation), respectively. We use the horizon-
tal texturemetrics without any change, computing the average number of onsets per beat and
the standard deviation of the duration between consecutive onsets. Regarding vertical texture,
three metrics are derived from tablature data:

1. average thickness: the number of notes averaged by onsets, weighting the notes by
duration where a quarter note has a weight of 1;

2. number of strings standard deviation, from all played strings at any non-rest onset;

3. average string centroid, obtained from the string centroids (mean of the played strings
numbers) of each non-rest onset.

For instance, given the top-left bar in Figure 8.2, each eighth note has a weight of 0.5 and
we obtain: a thickness of (10 ∗ 0.5)/8 = 0.625; a number of strings standard deviation
of ∼0.433; and an average string centroid of 3.875 (we then divide it by the number of
strings for normalisation). These first two vertical metrics are taken from Couturier et al.
(2023), after reformulating them to acknowledge the fact that the vertical axis in tablature
notation represent strings. The last metric is adapted from section 7.4.2, to also include a
metric related to the hand position on the fretboard.

146

8.1. Picking Pattern Generation

Finally, rather than using those values directly, we condition the generation on texture
variations to convey relative differences rather than trying to reach exact values. To do
so, we simply sum differences of texture values to obtain a horizontal texture variation and
a vertical texture variation, from the horizontal and vertical metrics respectively. While we
would expect the prompt to provide the model with texture information, that sole infor-
mation cannot help the model decide when and how to diverge from the original texture.
We compute these texture variation values to allow better control on the generated output
by letting the user choose how the texture should evolve. Because the texture controls are
ultimately designed to be used as manual sliders in notation software, we also round the
values to 2 decimal places, as a higher precision would render control of the model need-
lessly complex. Besides, if the model is trained with high-precision inputs, users entering
numbers with lower precision might decrease performance.

Additional Conditioning and Pipeline Summary In addition to the texture variation
information, we condition the picking pattern generation with two additional musical
signals: chords diagrams for the sequence, and an indication of the structural position of
the priming measure. The chord diagrams are supposed to be available, either directly
provided by the user or suggested from chord labels as presented in chapter 7. Those
diagrams inform themodel onwhat strings are played for each chord, which should guide
the proposed continuations to not use unwanted strings. For example, with a C major
chord, if it is played as a barre chord on the 8th fret, it uses all 6 strings (8.6.6.7.8.8)
while if it is played as an open chord, the 6th string should not be played (x.3.2.0.1.0).

The second conditioning signal, related to the position of the prompting measure in
the structure of the song, aims at helping the model appropriately suggest variations and
differences from the prompt measure. Indeed, even though WPM is repetitive, 4-bar cy-
cles will often end up with a contrasting measure, as studied in Bimbot et al. (2016). For
this reason, we take the number of the measure that is used as a prompt and provide the
model with this value modulo-2 and modulo-4. By informing the model with the relative
position of the first bar in such cycles, we try to enforce that the generatedmeasures better
fit with the overall song. All conditioning signals are shown Figure 8.3.

8.1.3 Deep Learning Model

Inspired byDalmazzo et al. (2024b) that uses a decoder-only implementation of a transfor-
mer network to generate chord progressions from small prompts, we base our code on
minGPT,1 an open-source implementation of the GPT-2 model (Radford et al. 2019). We
supplement the existing architecturewith fully-connected linear networks to provide con-
ditioning information using the pre-attentionmechanismproposed in (S.-L.Wu et al. 2023),
visible in Figure 8.5. It consists in concatenating the conditioning vectors to the input to-
kenised data. Finally, because preliminary experiments with larger networks showed that

1https://github.com/karpathy/minGPT, accessed in July 2025.

147

https://github.com/karpathy/minGPT

Rhythm Guitar Tablature Continuation

Figure 8.4: Screenshot of the “special paste” window from Guitar Pro.

the task at hand can be tackled by a network of limited size, we base our architecture on
the gpt-nano template of minGPT, using 3 layers of attention blocks, all featuring 3 at-
tention heads, while setting positional and vocabulary embeddings to a size of 48. A
graphical representation of the full architecture is provided in Figure 8.5.

Loss Functions For training, themodel uses a standardCross Entropy loss. Nevertheless,
to better enforce the chord diagrams constraints and limit the amount of notes on OoD
strings, we devise a guitar chord diagram loss and also use it for training. We combine
the losses by simply summing them, after scaling the diagram loss by 0.01 to make its
values closer to those of the cross entropy loss. To obtain the diagram loss value in a
differentiable fashion, we use a softargmax function to determine which notes the model
predicted at each time, and apply a mask of the authorised strings according to the chord
diagrams. The resulting non-zero values are simply summed to obtain the total loss of
processing the studied sample (or batch).

8.1.4 Rule-Based Model

As an alternative to the deep learning approach presented previously, we devise a deter-
ministic rule-based approach which aims at reproducing the copy-pasting process used
by guitarist composers (Bacot et al. 2024). In particular, after copying exactly the rhythm
used in a bar to another, the composer will typically need to correct the tablature for the
frets and strings to match the new chord, like in Figure 8.6. We propose a set of rules that
apply minimal transformations to a tablature region to adapt it to a new chord diagram.
This is, to the best of our knowledge, the first time that such a “copy-pasting” approach is
proposed for tablatures or even symbolic music, since copying is usually something that
is avoided rather than sought (Batlle-Roca et al. 2024; Yin et al. 2022). It is also worthmen-
tioning that the special paste (Guitar Pro8 User Guide 2025, p. 89) feature of the Guitar Pro
software does not permit to automatically modify the pasted content but rather allows to
copy parts of the musical notation independently (Figure 8.4).

148

8.1. Picking Pattern Generation

+

Tokenisation

Positional Embedding

Tokens Embedding
[B, L, 48]

<start>

<bar>

onset:0

duration:6

string:5

onset:6

duration:6

string:4

...

Diagrams Embedding Conditioning Embedding

[B, L, 48] [B, L, 48]

[B, L, 144]

Dropout (p=0.1)

x3

Layer Normalization

Causal Self-Attention
Layer

Linear

GELU

Linear

Dropout (p=0.1)

[B, L, 576]

[B, L, 144]

Layer Normalization

Linear

Logits

Pretraining and Finetuning Inference

Diagram
Loss

Cross Entropy
Loss

Gradient Descent

Crop logits

SoftMax

Sampling

Probabilities

Next
Token

Repeat
until <end>Repeat until Early

Stopping is triggered

[B, L, 144]

Layer Normalization

[B, L, 144]

[B, L, V]

B = Batch Size

L = Sequence Length

V = Vocabulary Size

O O O

X O O

X O O

Diagram
Information

Texture Controls

± x.xx

± y.yy

± x.xx

± y.yy

± x.xx

± y.yy

Measure
number

mod. 4

Measure
number

mod. 2

+

+

Optional

Finetuning Only

Concatenation

+ Addition

Pre-Attention

Figure 8.5: Summary diagram of the implemented model. The main architecture is A. Karpa-
thy’s minGPT model, with slight modifications to allow for additionnal conditioning. Numbers
in brackets denote the dimension of the matrices at each step. The main block is repeated three
times, by connecting the output of one block to the input of the next.

149

Rhythm Guitar Tablature Continuation

Figure 8.6: Example of a rhythm guitar part tablature including four chord-regions with
similar/uniform texture, excerpt from The House of the Rising Sun by The Animals. Im-
proved copy-pasting could be used to generate the three following bars given the first bar
and the chord diagrams.

The pasting toolwepropose is designed to, given a certainmusical excerpt as input, re-
turn a musical excerpt of the same duration, with the same rhythm, but where the strings
values (1 to 6) are updated to match a new chord diagram.

Let S% and S� be the lists of the strings played in the prompt tablature excerpt and in
the new chord diagram respectively. |S| denotes the length of the list S and B 8

�
denotes

the number of the 8-th string in S� , as it would be numbered by guitar players, i.e. 1 to 6
from thinnest (highest in pitch) to thickest (lowest). For example, if we consider a chord
that uses the 3 lower strings like a G power chord, or G5 (3.5.5.x.x.x):

S�(G5) = [6, 5, 4],
B0
�(G5) = 6,

B1
�(G5) = 5,

B2
�(G5) = 4.

The first rule of our model is fairly simple: no matter howmany strings differ between S%
and S� , whenever all strings are strummed in the original bar, all strings are strummed
in the copy. However, in many cases, strings of a chord may be strummed independently
(arpeggios, bass played separately...). In those situations, we map the strings from S% to
S� according to the following rules:

• If |S%| = |S�|, for instancewhen changing fromCMajor (x.3.2.0.1.x) toDMajor
(x.x.0.2.3.2) or G7 (3.x.3.4.3.x). In that case, we simply proceed with the
mapping B 8

%
→ B 8

�
, 8 ∈ J0, |S%|K. If S% = S� , the mapping is the identity function;

150

8.2. Data Preparation

• if |S%| < |S�|, the lowest strings are mapped to one another B0
%
→ B0

�
and all other

strings are chosen based on their distance to the highest string: B 8
%
→ B

high�−(high%−8)
�

.

• if |S1| > |S2|, we map the lowest strings together: B0
1 → B0

2 , and the other strings are
mapped according to the following equation:

B 81 −→
B

high2−(high1−8)
2 , ∀8 where B 81 <

B
high
1 +B0

1
2

Bi2 , otherwise.

If any duplicate string appears from that mapping on a given onset, the note is sim-
ply discarded.

Once the picking pattern has been copied, frets are added on all notes based on the
chord diagrams used at the corresponding time.

8.2 Data Preparation

This study is based on the DadaGP dataset, presented in section 3.1.3. In this section, we
detail the pre-processing steps required to use the dataset, which consist in identifying
rhythm guitar tracks, and extract 4-bar patterns for training and evaluating our proposed
models.

RhythmGuitar Identification Whilewe aim at generating rhythmguitar tablature only,
the DadaGP dataset contains all sorts of guitar tracks, some beingmelodic or solo sections
that are out of scope for this project. To detect what tracks are rhythm guitar, we imple-
ment the approach from Régnier et al. (2021) like in previous chapters. On the whole
dataset that contains over 2.9M bars of guitar, we detect that 2.3M bars are labelled as
rhythm guitar with at least a 50% chance. This means that almost 80% of the data is
rhythm guitar, which is quite close to the ratio of rhythm guitar bars manually annotated
in Régnier et al. (2021) (82%) on a subset of the MSB dataset.

4-bar Sequences extraction In Bimbot et al. (2016), the authors note that most contrastive
measures, i.e. measures that breaks the continuity of a sequence’s texture, will happen
within a 4-bar cycle. Preliminary analyses through self-similarity matrices showed that
this also applied to the DadaGP dataset, which is why we settled on 4-bar sequences for
our models, leaving the extension to any duration as future work.

Some additional constraints are applied to ensure that the patterns are varied and re-
flect different musical contexts. Firstly, the four-bar patterns are obtained in each file with
a sliding window using a 1-bar step. While this means that most bars are added 4 times
in the dataset, it ensures that the model can generalise to any part of the 4-bar cycles we
observed. More precisely, this ensures that the contrasting measure is not always the last

151

Rhythm Guitar Tablature Continuation

Table 8.1: Tokens in the vocabulary divided in their respective categories. token:n-m
means that the value for token can be any integer between n and m inclusive.

Type Tokens Voc. Size

Metadata <start>, <end>, <bar>, <PAD> 4
Note string:1-6, rest 7
Onset onset:0-47 48
Duration duration:1-96 96

Total 155

in a sequence (Bimbot et al. 2016) so that the DL model can be used at any point in a tab-
lature. Secondly, we drop any pattern that contains over 75% of rest time, or whenever
the prompt bar is entirely silent. While this threshold might seem high, it is required to
include patterns that could contain staccato notes that occupy a small part of each bar. Fi-
nally, to simplify the implementation of the diagram loss and because it still encompasses
almost 90% of the data, we only consider bars in 44 time signature. With those constraints,
we obtain 2 679 628 4-bar sequences, out of which 1 018 745 are unique.

Lastly, we isolate patterns that contain 2 to 8 chord diagrams. We separate the data
in such a fashion to allow for an approach akin to pretraining and finetuning. In doing
so, we can pretrain the model on as much data as possible, without any chord informa-
tion, to generate consistent continuations of a first measure in tablature format. Once the
model is pretrained, we conduct finetuning on 4-bar sequences with chord diagram infor-
mation, to enforce the generated tablatures to match the strings played in each chord (see
Figure 8.5). 31 596 patterns match our constraints and will be used to finetune the final
model, which leaves 987 149 patterns (∼97%) for pretraining. Most patterns of the latter
category do not explicitly mention chord diagrams, even though they usually have chord
labels defined. Those observations suggest that future work could strongly benefit from
some kind of model or heuristic that reliably recognise chord diagrams from tablature
excerpts to increase the size of the finetuning dataset.

Tokenisation Like standard sheet music, tokenising a tablature requires encoding the
duration of each note alongwith its pitch, except that the pitch can be described indirectly
with a string-fret pair. However, in our work, fret information is held within the chord
diagrams and picking patterns only gather string information with their musical timing.
For this reason, we use a tokenisation scheme inspired by Y.-H. Chen et al. (2020): each
new note is described by three tokens, its onset, its duration, and the string it is
played on. However, the original tokenisation scheme was restricted to a sixteenth note
resolution while we wanted to be able to also account for triplets that can be encountered
in the dataset. We settle for a resolution of 12 ticks per quarter note i.e. 48 ticks per bar in

152

8.3. Transformer Model Training and Inference Details

<start>

<bar>

onset:0

duration:12

string:5

onset:12

duration:3

string:4

onset:15

duration:3

string:3

onset:18

duration:6

string:2

onset:24

duration:6

string:3

onset:30

duration:6

string:4

onset:36

duration:3

string:3

onset:39

duration:3

string:2

onset:42

duration:6

string:2

onset:42

duration:6

string:1

<end>

Figure 8.7: Example of the tokens obtained from a single bar tablature excerpt.

44. This resolution supports 16th note, as well as triplets and sextuplets. A summary of the
vocabulary is provided Table 8.1, alongwith an example of a tokenised excerpt Figure 8.7.

8.3 Transformer Model Training and Inference Details

This section presents the training details for the DL model introduced previously. The
rule-based model does not require any parameter optimisation and can be used directly
for inference.

Pretraining and Finetuning Asmentioned in section 8.2, the DLmodel is trained in two
phases. During pretraining, it has to generate a 3-bars continuation of the first bar used as
input, guided by texture controls and the structural position of the first bar, but without
any information about the chord progression. Afterwards, it is finetuned on the subset of
data with chord diagrams information, so that it also exploits the chord conditioning in
its generation.

Both pretraining and finetuning steps use an AdamW (�0 = 0.9, �1 = 0.95) optimiser
with weight decay (� = 0.1) on linear layers.

Pretraining uses a batch size of 256 samples, a learning rate � = 5 × 10−4 and an early-
stopping strategy with a patience of 3 epochs, any improvement over the validation loss
resetting the patience count. The pretrain dataset is split into a train and a validation set
with a 90/10 ratio. Training stopped after 27 epochs, which took approx 20 hours on a
Nvidia L40S Graphical Processing Unit (GPU). A discussion on the energy and computa-
tional cost of the DL model, compared to the rule-based one, is provided appendix B.

Finetuning used a batch size of 64, a learning rate of � = 5 × 10−5 and the similar early-
stopping strategy but with a patience of 20 epochs. The finetuning dataset is split in train,
validation and test sets with 70/15/15 ratio. Note that no weights were frozen in this
step, only the learning rate was decreased. Training stopped after 37 epochs which took
4 hours on a RTX2080 Ti GPU.

153

Rhythm Guitar Tablature Continuation

Inference At inference, tablatures are generated by the DL model using top-: sampling
with : = 5. The generation is automatically stopped as soon as an <end> token is pro-
duced. Although it depends on the amount of notes in each of the 3 bars, a full sample
is obtained in less than 5 seconds on a standard laptop CPU (Intel Core i5). It might be
worth looking into ways of optimising the model to reduce this computational time and
ensure it would easily fit in a composer’s pipeline. However, wewant to highlight that the
fact that the model does not need a GPU to generate content in a relatively small amount
of time is an important quality for enabling its use on standard computers for all users.

8.4 Quantitative Results

After training the transformer model, we can test it and compare it with the rule-based
model. This section introduces the quantitative evaluation metrics used, and discuss the
comparative performance of both models, using the original 4-bar sequences as a refer-
ence.

8.4.1 Evaluation Metrics

To conduct a first automatic evaluation of our models, we implemented several metrics
to assess how the strumming pattern we generate compare to the reference tablatures.
The use of these metrics assumes that the reference is the best possible answer, which
is debatable from the perspective of an open composition situation, but a convenient as-
sumption for automated quantitative evaluation. More specifically, these metrics do not
aim at quantifying the quality of the generated continuation, but rather at measuring its
proximity to a continuation choosen by a human composer, which can therefore be con-
sidered as one reasonable solution, possibly among many.

We first use a Levenshtein edit distance to assess how close predictions are to the ref-
erence. The edit distance being dependent on the size of the sequences, we compute a
normalised version, using the reference as the target length. Note that this normalised
version is not necessarily smaller than 1 as, for instance, an entirely wrong prediction
twice the size of the reference would yield a value of 2.

Second, to evaluate the impact of the conditioning on the predictions, we compute
the ratio of Out-of-Diagram (OoD) notes, i.e. notes that are played on strings that are ex-
cluded in the current chord diagram, for example the lowest string in an open A minor:
x.0.2.2.1.0. An example of an OoD note in a tablature is the circled note in Figure 8.8.
We also compare the symbolic texture of each generated bar compared to the expected tex-
ture that was provided as conditioning, based on the texture definition of section 8.1.2.
More precisely, since the conditioning actually consists in textural distances of each bar
to the prompt measure, we compute the Manhattan distance between the expected and
observed texture distances. Through this measure, we aim at determining if the model
takes the texture conditioning into account during generation and, if so, how close to the

154

8.4. Quantitative Results

Prompt ignored

when computing

metrics

OoD

String

Token

Difference

Reference

Generation

Horizontal
Vertical

-0.25

 0.05

-0.25

-0.02

0

0

Desired

Texture Distance

Observed

Texture Distance

Horizontal
Vertical

-0.25

 0.07

-0.25

~0

0

0.02

Figure 8.8: Generated picking pattern (bottom) and the expected reference tablature (top).
There are 7 notes that are placed on different strings, so the edit distance is 7, which
is 0.1 after normalisation by the number of tokens. Since there is a single note Out-of-
diagram over the 22 notes in the last 3 bars, the ratio of OoD notes is ∼0.05. Finally, the
texture distance is obtained by summing the absolute difference between texture values
(Manhattan distance), and yields 0.06 for that example.

expected texture the generation can be. An example of a reference tablature, along with
a generated one and details on the metrics values for those is shown Figure 8.8. In this
example, because the generation has the same rhythm as the reference, no difference in
horizontal texture is measured. However, because the strings are played slightly differ-
ently, the string centroids are not equal and a 0.02 vertical texture difference is observed
on each bar.
During evaluation, we compute those metrics by generating predictions on the test set
with the rule-based model, and variants of the DL model. Those variants are a model
pretrained but not finetuned, and two finetuned models, with or without diagram loss
(see Table 8.2). We compare deep learning-based models to the rule-based one to assess
the validity of the rules and determine whether training on large amounts of data signif-
icantly affects the performance. Besides, we compare pretrained and finetuned models
to analyse the importance of providing diagram information for limiting OoD notes. We
compare models with or without diagram loss for the same reason.

Final results for all those metrics are presented Table 8.2.

8.4.2 Discussion on Performance

Out-of-Diagram Notes. The first observation we want to make on the results presented
in Table 8.2 is that 4.1 % of the notes in the dataset are OoD, meaning that the tablatures
include strings that should not be played according to the provided chord diagrams. The

155

Rhythm Guitar Tablature Continuation

Table 8.2: Results obtained on our evaluation metrics. Most values are N/A (Not Appli-
cable) for the test set because there is not point in rating the fidelity of the reference to
itself. For all metrics, a value closer to 0 is better. All values’ differences are statistically
significant (p-value < 0.001 in paired t-tests), except the ones that share a g symbol. Val-
ues with a H denote data series that could not be used in statistical tests because their
value is constant.

OoD Notes Ratio Edit Distance Texture Distance

Test Set 0.041 N/A N/A

Rule-Based Copy 0H 0.605 2.063
Pretrained 0.109 0.456 0.362
Finetuned 0.091 0.429g 0.268g

Finetuned w/ Diag. Loss 0.077 0.424g 0.273g

main possible reasons for such OoD notes are: i) imprecise notation: some transcribers
will not always ensure that the diagram exactly matches the excerpt its referring to, it can
also happen that a chord diagram is notwritten at all, the previous diagram then holds for
a longer duration than it should; ii) use ofmuted strings to play dead notes, either voluntar-
ily to add unpitched notes to the part, or out of convenience by simply muting unwanted
strings and then strumming all strings regardless; iii) to play melodic ornaments or addi-
tional notes that technically do not belong to the current chord annotation but make sense
in context. Those observations remind us that diagrams often have the practical aim to
provide the information of a known hand position to the performer, rather than indicating
the precise set of played strings. Even though perfectly reproducing the reference is not
necessarily desirable, we can use the value observed in the dataset as a higher-bound for
the ratio of notes that are played on diagrams’ strings, and use it to assess the performance
of the other models.

The Rule-Based model has a perfect score on OoD notes because it guarantees that the
diagrams are respected by construction. In contrast, the pretrained model, which lacks di-
agram conditioning, achieves a reasonably high 89.1 % in-diagram note rate. This value
is actually expected not to be low since the average number of strings played in each di-
agram in the test set is 4.7 which means that, if strings were played randomly, ∼ 78 % of
notes would be in-diagrams for a 6-strings guitar. Nonetheless, finetuning with diagram
conditioning and an additional loss reduces the amount of OoD notes further, although
it still does not fully reach the dataset’s 4.1 % out-of-diagram note rate. Note that we also
experimented with zeroing-out probabilities of unwanted tokens based on the current
chord diagram to eliminate all out-of-diagrams notes and match the performance of the
baseline on that aspect. However, these constraints came at the expense of other perfor-
mance and worsened all metrics, in particular texture distance, while the sequences also
tended to be ill-formed, onset, duration and string no longer coming in triplets. We
thus deemed this approach non-viable and do not report its results in this chapter.

Edit Distance. The edit distance metric reflects how close generated sequences are

156

8.5. Subjective Evaluation

to the reference. The Rule-Based Copy model achieves reasonable edit distances, likely
because it faithfully replicates the prompt structure. This supports the hypothesis that
copying one bar to the next can actually be a valid approach for generating rhythm guitar
tablatures. The pretrained model improves on this metric which suggests that the training
procedure was fruitful, and the results are further improved in the finetuned model, even
though the addition of the diagram loss has no significant impact on the edit distance.
This last observation suggests that the “errors” that increase the edit distance are not
necessarily OoD notes that are effectively reduced by the diagram loss.

Texture Distance. The texture distance of the DL model is much lower than the
rule-based one, showing an effective use of texture conditioning. Finetuning maintains
low texture distance despite added constraints, indicating robustness. The worse perfor-
mance of the rule-based copy on these metrics is actually expected, since the rules imple-
mented do not impose any texture constraints. This however shows towhat extent texture
variation in WPM still limits the adequacy of mere copying in notation and composition.

8.5 Subjective Evaluation

While the metrics we introduced allow to assess the overall performance of the proposed
models, their link to the actual musicality of the results is debatable and hard to establish.
For this reason, we devise an online survey to gather subjective feedback on the proposed
approach. This study got approved by the ethics committee of Université de Lille (project
reference: 2024-823-S132).

8.5.1 User Study Details

The main goal of the survey we designed is to assess what generation model is preferred
by participants on various musical aspects, and why. To keep the study to a reasonable
duration, we decided to ask participants to rate 5 different samples from 3 different con-
figurations: the ground-truth, the rule-based copier, and the finetuned model that uses
the diagram loss. The samples used are shown in Appendix A. All samples are rated on
a 1-7 Likert scale on 4 criteria:

1. Playability: is the tablature shown playable on guitar? This questions aims at measur-
ing the perceived playability, likely correlated with difficulty, of the samples;

2. Consistency: are the strumming and rhythm consistent throughout the excerpt? While
some variation might be desirable, some coherence is expected between bars;

3. Interest: is the musical content shown interesting? This question aims at gathering
subjective feedback on the tablatures shown;

4. Usability: would the proposed tablature be usable in a performance or composition context
without editing it? Since the ultimate goal of our system is to assistwriting tablatures,
we collect direct feedback on the possible usage of the tablatures.

157

Rhythm Guitar Tablature Continuation

Snippet 8.1 Questions related to musical practice.
• What guitar type do you play the most? One of [Classical Guitar, Electric Guitar, Folk

Guitar];

• Do you know how to:

– Read rhythm notation? Yes/No
– Read notes on a score? Yes/No
– Read chord charts? Yes/No

• On the guitar type you play the most, how would you rate your own level? 5 point choice,
from 1 (Beginner) to 5 (Expert);

• What musical style would you say you practise the most? One of [Classical Music, Jazz,
Folk/Country, Pop, Rock, Metal, Ska/Reggae, Blues/Soul, Funk, Other];

• Select all guitar types you play: Multiple choice from [Classical Guitar, Electric Guitar,
Folk Guitar].

Snippet 8.2 Questions subset from the Goldsmith-MSI test.
• I engaged in regular, daily practice of a musical instrument (including voice) for X years.

One of [0, 1, 2, 3, 4-5, 6-9, 10+];

• At the peak of my interest, I practised my primary instrument for X hours per day. One of
[0, 0.5, 1, 1.5, 2, 3-4, 5 or more];

• I have had formal training in music theory for X years. One of [0, 0.5, 1, 2, 3, 4-6, 7+];

• I have had X years of formal training on a musical instrument (including voice) during my
lifetime. One of [0, 0.5, 1, 2, 3-5, 6-9, 10+];

• I can play X musical instruments (including voice). One of [0, 1, 2, 3, 4, 5, 6+].

Personal and Music-related Questions. We ask several other questions to assess the
representativeness of our population study and the musical expertise of the participants.
Regarding personal characteristics, we ask participants in which country they learnt mu-
sic, their age, and their gender. When it comes to their musical practice, the survey in-
cluded twodifferent sets of questions: onewas related to their guitar andmusical practice,
the other one was a subset of the Goldsmith-MSI test to assess their “musical expertise”
(Müllensiefen et al. 2014). The questions asked are provided in Snippets 8.1 and 8.2. We
do not consider that the answers to those questions will reflect the actual musical level –
as a practitioner – of the participants. Rather, the questions aim at identifying possible
clusters of respondents that might be correlated to ratings of the samples.

The studywas deployed on an institutional instance of LimeSurvey and advertised on
public guitar and music forums and to acquaintances of the authors. All answers were
gathered anonymously and will be shared publicly upon publication of this work.2

2Code and data will be available at https://algomus.fr/code.

158

https://algomus.fr/code

8.5. Subjective Evaluation

Table 8.3: Number of participants per geographical regions.

Region Number of Participants

Western Europe 33
Southern Europe 7
Northern Europe 2
Eastern Europe 3
Oceania 1
South America 2
Northern America 6

8.5.2 Questions Results

The goal of our user study is to to assess if one configuration has higher ratings than
another (ground-truth vs rule-based vs attention-based). We conducted an a priori sta-
tistical analysis to determine the required sample size using the G*Power software (Faul
et al. 2007). We based our estimation on paired t-tests (since all models are evaluated on
the same test data), aiming for a significance level of
 = 0.05, a power (1 − �) = 0.95 and
a default effect size 3I = 0.5 considering a two-tails distribution. This analysis identified
a minimum sample size of 54 participants, and we closed the study when this amount was
reached.

The majority of the participants were male (= = 41), with only 3 female participants
and 10 who did not answer this question. Participants were 46 years old on average (the
median is similar), with the following repartition: 18-29: 13; 30-39: 8; 40-49: 9; 50-64: 16;
65+: 8. The countries where each participant learned music are grouped according to
the UNGeographic Regions taxonomy3 and shown in Table 8.3. Unfortunately, our panel
of participants is biased towards male and Western European guitar players. Conduct-
ing another study with more diverse respondents might change the conclusions of this
subjective evaluation in some aspects, but it could not be studied in this work.

Boxplots comparing the statistical distribution of the answers are provided Figure 8.9.
Those graphs show firstly that even though the distributions of answers vary depending
on samples, they are above average in most cases. It is also worth noting that differences
between the answers distribution are not always significant, depending on the sample
considered. Interestingly, the ratings of the reference are not much better than the rule-
based copier, which is even better rated at times, on Playability for the third sample for
instance. The median ratings of the transformer model we proposed are never more than
one point away from the other configurations, but still significantly lower than the ref-
erence on almost all questions and samples. However, the transformer model’s ratings
are also rarely significantly different from the rule-based one, which suggests that the
participants did not deem one better than the other on the queried criteria.

3https://unstats.un.org/unsd/methodology/m49/#ftn13, accessed in May 2025.

159

https://unstats.un.org/unsd/methodology/m49/#ftn13

Rhythm Guitar Tablature Continuation

Consistency Interest Playability Usability

1 - Extremely Low

2 - Very Low

3 - Low

4 - Average

5 - High

6 - Very High

7 - Extremely High

*

** **

*

*

Configuration

Reference

Rule-Based Copier

Transformer

(a) First Sample.

Consistency Interest Playability Usability

1

2

3

4

5

6

7

**
*

(b) Second Sample.

Consistency Interest Playability Usability

1

2

3

4

5

6

7

**

* *
**

**
*

(c) Third Sample.

Consistency Interest Playability Usability

1

2

3

4

5

6

7

*
*
**

(d) Fourth Sample.

Consistency Interest Playability Usability

1

2

3

4

5

6

7

*

(e) Fifth Sample.

Figure 8.9: Boxplots of the participants’ answers for each question and each sample. The
boxes indicates the distributions’ quartiles, while the whiskers describe all others sam-
ples that are not considered outliers (denoted by empty circles). Notches around the me-
dian shows the confidence interval, and the dotted lines represent the average answer
values. Brackets indicate statistical significance in pairwise Wilcoxon signed-rank tests
(non-normality of the data was checked beforehand) using a Bonferroni-adjusted
� level
of .05

3 : *→
� < 0.05, **→
� < 0.01,***→
� < 0.001.

Those observations are confirmedwhen looking at the cumulated answers on all sam-
ples for the different configurations (Figure 8.10), where the differences between themod-
els are also more significant. More precisely, analysing the cumulated answers from Fig-
ure 8.10 shows that the rule-based model is considered significantly better than the DL
model on Consistency, Playability, and Usability. The better performance on consistency

160

8.5. Subjective Evaluation

Consistency Interest Playability Usability
0

50

100

150

200

250

300

C
ou

nt

*** **

**

Reference

Rule-Based

Transformer

7 - Extremely High

6 - Very High

5 - High

4 - Average

3 - Low

2 - Very Low

1 - Extremely Low

Figure 8.10: Cumulated answers on all 5 questions for each configuration. Brackets indi-
cate statistical significance in pairwise Wilcoxon signed-rank tests (non-normality of the
data was checked beforehand) using a Bonferroni-adjusted
� level of .05

3 : *→
� < 0.05,
**→
� < 0.01,***→
� < 0.001.

was expected, because the copy-pasting approach enforces almost identical reproduction
of the prompt bar’s content. The higher playability rating of the rule-based model might
also be due to this copy mechanism, because playing the 4 bars require less effort if the
first bar’s rhythm and picking pattern is repeated, while the transformer model might
generate more varied content that is comparatively harder to play. Finally, analyses of
text answers from the participants show that some generations of the transformer model
were deemed unusable because of too many “mistakes” or “errors” in the final tablature.
We discuss these mistakes in more details in the following section, but the ratings suggest
that guitarists consider a robust system like the rule-based copier more usable because it
is less likely to generate tablatures with errors, as long as the prompt does not have any.

To further analyse what influence the answers of participants, we implement a lin-
ear mixed effects model (Pinheiro et al. 2000). Results show that the measured personal
characteristics (age, gender, country where they learned music, music proficiency level)
of the participants do not significantly impact the ratings given. The results for a subset
of the most significant variables are reported Table 8.4. The “scale” of the test, i.e. the
residual variance is 1.6 (standard deviation of ∼ 1.265) which means that a strong part of
the variability was not captured by our study. It is unclear what might be explain those
residual errors since the variance due to participants is 0.503. Likewise, the model type
contribute to a change in ratings around 0.5. Besides, only sample 3 and 5 are rated sig-
nificantly differently than sample 1 (taken as the reference). It is possible that our survey
failed to capture some aspects of musical practice related to tablatures, and it might be
worth studying this issue further in future studies.

161

Rhythm Guitar Tablature Continuation

Table 8.4: Results of the linear mixed effects model analysis. The intercept is the base
answer value observed, while the models and samples are compared to the reference or
the first sample, respectively.

Variable Coeff. Std. Err. I ?-value

Intercept 5.692 0.382 14.917 < 0.001

Model: Rule-Based −0.156 0.056 −2.814 0.005
Model: Transformer −0.402 0.056 −7.225 < 0.001
Sample 2 0.032 0.072 0.448 0.654
Sample 3 −0.361 0.072 −5.035 < 0.001
Sample 4 0.026 0.072 0.358 0.720
Sample 5 0.143 0.072 1.978 0.048

Participant Variance 0.503 0.094

8.5.3 Thematic Analysis

Finally, the survey contained free-text questions to allow for participants to explain their
ratings if they wanted to. The free-text questions asked the participants to discuss what
guided their ratings in the previous Likert questions. There was one question for each
sample, where they could discuss any of the three configurations evaluated. 31 partici-
pants wrote at least one text answer when rating samples. We analysed the answers by
conducting a thematic analysis, as defined in Braun et al. (2006), to gain better understand-
ing of what guided participants’ ratings. After going through the answers multiple times
to define codes, we assembled them in themes represented Figure 8.11. The rest of this sec-
tion provide example quotes that relate to each theme, and analyse what it implies for the
models used and the survey we designed.

Ratings based onmusical characteristics. As expected, the participants explainedwhat
drove their ratings. Rhythm was mentioned by 10 participants (P 6, 7, 8, 10, 11, 12, 17, 22,
23, 28), a participant for instance explained looking for “rhythm that gets more complicated”
(P 10). Consistency with the first bar was also evaluated as expected (P 8, 13, 20, 23, 26),
and was based on specific musical aspects:

“[The] consistency rating I based on how similar the continuation was to the first
measure in rhythmic pattern or melodic motion. However more consistent examples
tended to score lower on musical interest.”

— Participant 23

This answer also supports the hypothesis that the rule-based model, even though it is
consistent and efficient in its generation, might be less interesting than the transformer

162

8.5. Subjective Evaluation

Subjective Feelings

Interesting and

Useful

Not Interesting

and Useless

Ratings Based on

Musical

Characteristics

Rhythm

Playing

Difficulty

Consistency

with the first bar

Harmonic

Consistency

Chord

Progression and

Positions

Obstacles

encountered when

rating

No Noticeable

Difference Lack of a Melody

Notation not

always clear

Over-Precise

Picking Patterns

Disturbing

Dead-Notes

Figure 8.11: Final themes and sub-themes identified from the text answers.

model. While further human studies are required to understand which parts of the ref-
erence and transformer model generations were interesting, it suggests that being overly-
consistent is not interesting from a musical point of view. The non-deterministic nature
of the transformer’s generation intrinsically allows for more varied samples.

13 participants explained what drove their playability ratings (P 0, 5, 8, 10, 11, 12, 15,
18, 20, 22, 24, 28, 29). Some excerpts were for instance judged too fast:

“[T]he harmonics at that speed are not playable. The change from G to G/F# isn’t easy
at that speed - it requires moving two fingers on strings 6 and 5”

— Participant 5

But other excerpts were found easy to play: “the tablatures (identical, only the key signature
changes) are super simple and very easy to play” (P 28).

6 participants (P 0, 12, 13, 14, 17, 24) were also influenced by their perception of how
the excerpts should be strummed or picked:

“[I]f we play with fingers and not a pick we need more fingers, and if we use a pick the
dead notes are not located in the right place, sometimes some are missing, and others
are useless.”

— Participant 12

Such comments support a need to better indicate the way accompaniment is played on
guitar, and add playability constraints in the transformer model so that the tablatures
are always realistic. The MIR community could also study the prediction of strumming
patterns for rhythm guitar, possibly through the adaptation of existing research on strum-
ming pattern transcription (I. Barbancho et al. 2014; Murgul et al. 2025).

163

Rhythm Guitar Tablature Continuation

Unfortunately, feedback from 6 participants suggests that the survey explanations
were misunderstood as those participants justified their rating from the chord progres-
sion, even though we explained that it was chosen beforehand.

“[T]he harmonic progression is weak from the start, the arrival on F#Major is weirdly
placed. The progression of this cycle is too random and doesn’t take the repetitiveness
of music and the location of chords in cycles of tension and release into account, which
leads to an usable chord progression that doesn’t make sense”.

— Participant 8

This feedback and others of the same type suggest that the task could have probably been
explained better, so that the participants do not rate the chord progression itself but the
way it is played (it was explained in the task description but it might have been misun-
derstood). It is also possible that asking participants to rate rhythm guitar guitar excerpts
while asking them to ignore chord progression details was unrealistic.

Finally, while chord diagrams were also determined beforehand, they were at times
judged inappropriate or too difficult by 7 participants (P 2, 5, 8, 11, 13, 20, 22):

“Most guitarists would use movable chord shapes with typical fingerings instead.
These tabs are misleading for novice players.”

— Participant 22

Again, these aspects should technically not have been rated by the participants, but their
mention by 7 participants highlight the importance of chord positions in the perceived
playing difficulty of rhythm guitar tablatures.

Subjective Feelings As there were questions on the Interest and Usability of tablature
excerpts shown, participants expressed both positive and negative feedback. The justifi-
cations were often based on subjective feelings like the “naturalness” (P 13) or the “musi-
cality” (P 12, 0, 7) of the excerpt. For instance, one participant comments:

“what I found interesting here are the suspended chords and the corresponding rhyth-
mic pattern”

— Participant 28

while another mentioned the “awful sound and uninteresting and boring melody” (P 6). Oth-
ers explicitly discussed the usability of the examples, mostly negatively: “the rhythm is
weak so no possibility or reusing it identically or even partially” (P 8); “The usability is question-
able for me. In general, I choose the chord positions, voicings, and rhythmic accents myself.” (P
28)

Overall, the answers show limited interest in the suggestions provided, and theywere
rarely considered usable directly. One participant in particular (last quote) explained that

164

8.5. Subjective Evaluation

the tablaturemade little sense to them in a context of rhythmguitar, since theywould usu-
ally play a rhythm of their choosing on the specified chords. However, while there is an
observable negativity bias in the answers (Norris 2021), many answers are also neutral as
participants simply explain what guided their ratings. From those answers, we hypoth-
esise that a limitation of the survey is that it only allowed participants to rate a static set
of sample, where all conditioning values were fixed. Conducting interviews with guitar
players where they can use the transformer model in real-time by controlling the differ-
ent conditioning parameters might change their perception of the interest of having such
a tool. Real-time interactions with the models could also allow them to further explore
whether consistency is opposed to interest or not.

Obstacles encountered when rating Finally, participants also mentioned what both-
ered them when rating the excerpts. Some (P 8, 12, 16) found the notation unclear “inter-
esting rhythm pattern, but not well-written in the score” (P 8). Participants 11 and 13 some-
times found the tablature notation overly precise:

“to request strumming sometimes 2 strings, sometimes 3 and sometimes 4 strings
feels like a bit too difficult to play exactly live.”

— Participant 11

This overly precise string notation by the transcribers might be motivated by the goal of
an optimal audio playback rendering within the tablature notation software (Bacot et al.
2024). Indicating precisely what strings are strummed allow the playback sound to re-
semble the original recording closely, but this level of precision is detrimental when a
guitarist tries to learn the tablature. This observation suggest that tablatures with differ-
ent levels of details might be necessary depending on the use-case envisioned for them,
like precise playback as a background loop for composing, or clear picking patterns for
learning. Another crucial issue with the notation, mentioned by 10 participants, is the
use of dead-notes (muted noted, denoted by x) in the tablatures. Some were in the origi-
nal excerpts, but many were added due to the transformer model predicting OoD notes.
Using dead notes seemed the natural way of notating such OoD notes to us, as we cannot
predict an appropriate fret for those notes automatically. Keeping those suggested OoD
notes but making them muted seemed like a fair way to evaluate the transformer model,
but it bothered participants:

“In [the first example] the ’X’ in the score is saying ’play the strings, but muting
them’. (which is a different meaning than the ’X’ had in [previous] examples, where
X was ’avoid plucking’. […] in [the second example] the ’X’ feels like meaning ’avoid
plucking this’. I do not like it. I prefer how it is notated in [the third sample], there are
no X and it feels [like] the best notation.”

— Participant 11

165

Rhythm Guitar Tablature Continuation

The importance given to those dead-notes byparticipants suggest that reducing the amount
of OoDnotes should be a priority in improving the transformermodel. They could also be
removed through a (possiblemanual) post-processing step, without reducing themodel’s
performance.

8.6 Conclusion

In this chapter, we presented the task of picking pattern generation that can, when com-
bined with chord diagram suggestion, be used for rhythm guitar tablature continuation.
We proposed two differentmodels for picking pattern generation, one rule-based and one
transformer-based. The transformer basedmodel can usemultiple conditioning signals to
control the output, while the rule-based model implements an adaptive copy that is sim-
pler and faster. We devised multiple metrics to automatically evaluate the performance
of the models, and conducted an online survey to get subjective feedback on generated
samples. While digital metrics suggest that the transformer model performs best, subjec-
tive feedback rated the rule-based copier closer to the reference data. Detailed analyses of
the online study also gave interesting feedback on what guitar players look at most when
considering rhythm guitar tablatures. They however also highlighted the limitations of
this online study, and we hypothesise that the transformer-based model would be better
evaluated through interactive use and semi-guided interviews. Considered approaches
for improving the transformer model include adding dead notes in the tokenisation pro-
cess to explicitly model them, and developing a second post-processing model that could
add meaningful out-of-diagram notes like for transitioning between chords. All code for
reproducing this chapter’s experiments and results will be shared publicly after publica-
tion of the results.

166

9

Conditional Bass Tablature Generation

“Some guitarists had to play bass because there weren’t enough to go around. You can
always tell when a bass player is actually a guitarist, they look like they’ve been demoted.
But I don’t see it like that, I really like being the bass player. ”

Baldwin (2022)

Contents
9.1 Introduction . 168
9.2 Data Preparation . 169
9.3 Method . 172
9.4 Qualitative Analysis of the Generation . 174
9.5 Conclusion . 177

Many guitarists can be tempted to play bass guitar because of the instruments’ apparent
similarity. However, the role bass plays in WPM is fundamentally different from that of
rhythmguitar (Goyal 2008). For this reason, composerswho play guitar do not necessarily
have the knowledge to write realistic and idiomatic bass parts in their tablatures. In this
chapter, we present amodel for bass tablature generation, given an existing rhythm guitar
tablature. This task was one of the first identified in the TABASCO project and expressed
by guitarist composers as of interest to them, along with drum track generation (Bacot
et al. 2024). Olivier Anoufa programmed all code for this task during his second year of a
Master’s program inData Science, as a research project supervised by Ken Déguernel and
me. This chapter is partly based on his report, which was updated and completed by Ken
Déguernel and me for the following publication:

“Conditional Generation of Bass Guitar Tablature for Guitar Accompaniment in
Western Popular Music”

Olivier Anoufa, Alexandre D’Hooge, Ken Déguernel
Proceedings of the AI Music Creativity Conference (AIMC), 2025. (Anoufa et al. 2025)

167

Chapter 9. Conditional Bass Tablature Generation

Figure 9.1: Tablatures for rhythm guitar (top) and bass (bottom). Excerpt from Living in
the Past by Jethro Tull. One can see that, overall, the bass and rhythm guitar are consistent
harmonically and rhythmically, but the bass part does not copy the rhythm guitar.

9.1 Introduction

In WPM, the bass guitar provides the harmonic foundation of a tune whilst driving the
rhythm section (Goyal 2008; Hove et al. 2014). Composing engaging bass lines is there-
fore an important aspect of song writing. A user study by Bacot et al. revealed a signif-
icant demand among guitarists for accompaniment generation tools (Bacot et al. 2024).
More precisely, several guitarists expressed during semi-structured interviews the de-
sire for a tool which, given a guitar part they composed themselves, would generate bass
lines and drum parts. Bacot et al. (2024) explain that, during the composition process,
whilst preparing their demo, guitarists often resort to writing basic bass and drum lines
to accompany their compositions, due to a limited familiarity with these instruments. In
this chapter, we consider the task of composing a bass line from a rhythm guitar tabla-
ture alone, which can be typical for a singer-songwriter guitar player. More specifically,
we focus on conditional symbolic music generation for bass guitar tablatures (Figure 9.1)
within the context ofWPM. Such a systemmight allow guitarist composers to assess what
their compositions would sound like with a bass part, before actually workingwith a bass
player.

While the role bass plays in WPM is usually more than a mere accompaniment, it is
rarely the lead instrument of a song, and generating plausible bass tablatures is thus akin
to the MIR task of accompaniment generation. Suggesting bass tracks is already studied
in the audio domain forWPM inGrachten et al. (2020) and Pasini et al. (2024), an approach
generalised to any accompaniment tracks of a leadmelody inNistal et al. (2024). However,
to the best of our knowledge, there is no published work that studies the generation of
bass guitar tablatures. Preliminary experiments with the GTR-CTRL model (Sarmento
et al. 2023a) showed that control tokens in a prompt are not enough to drive the model
towards generating bass tracks, as other instruments eventually appear in the generated
score. That approach is also restricted to free generation so the bass tracks can never really
match an existing guitar tablature.

168

9.2. Data Preparation

new_measure

distorted0:note:s2:f10

distorted0:note:s3:f9

distorted0:note:s4:f7

distorted0:note:s5:f7

distorted1:note:s2:f17

bass:note:s4:f7

wait:480

bass:note:s4:f7

wait:480

bass:note:s4:f7

wait:480

bass:note:s4:f7

wait:480

distorted1:note:s2:f17

nfx:hammer

bass:note:s4:f7

wait:480

distorted1:note:s2:f15

bass:note:s4:f7

wait:480

distorted0:note:s2:f8

distorted0:note:s3:f7

distorted0:note:s4:f5

distorted0:note:s5:f5

distorted1:note:s2:f13

bass:note:s3:f5

wait:960

artist:arch_enemy

downtune:-5

tempo:95

start

[...]

Metadata
Tokens

Figure 9.2: Example measure of a tablature with two distorted guitars and a bass, and
the corresponding tokens (right) from the DadaGP dataset. Excerpt from Pilgrim by Arch
Enemy.

Those experiments confirmed the need for a custommodel andmethod for generating
bass guitar tablatures for accompaniment. As a first step towards this goal, the contribu-
tions of this paper are as follows: i) Isolating bass guitar and rhythmguitar tracks from the
DadaGP dataset (section 9.2); ii) Adapting an existing conditional accompaniment gen-
eration architecture to bass guitar tablature (section 9.3); iii) A qualitative analysis of the
generated content, with future steps to improve bass tablature generation (section 9.4).

9.2 Data Preparation

The DadaGP datasets contain multiple songs with bass tablatures and is therefore the
dataset of choice for thiswork. Unlike other chapterswhere theGuitar Pro fileswere used,
this chapter use the preprocessed token files directly. The data preparation pipeline pre-
sented in this section consists of three stages: (1) parsing and preprocessing the DadaGP
tokenfiles to extract bass guitar tablature information, (2) identifying rhythmguitar tracks
to serve as conditioning input, and (3) segmenting the data into manageable sequences
for model training.

169

Chapter 9. Conditional Bass Tablature Generation

9.2.1 Tokenisation and Preprocessing

The DadaGP tokenisation format adopts an event-based approach (Le et al. 2024), similar
to other music generation models, by representing musical events as discrete tokens. A
measure and its corresponding tokens is shown Figure 9.2 for reference. All token files
start with metadata tokens that state the artist (if known), the starting tempo of the song
and an optional downtuning. This last element refers to the distance in semitones between
the current string pitches and the standard tuning: (E1, A1, D2, G2) for a 4-string bass.
The musical content is then encoded with new_measure tokens and notes are written in
the form of <instrument>:note:<string>:<fret> (e.g. bass:note:s4:f7) as a
way to directly encode tablature notation. Each note token can be followed by note effects
token (nfx) that represent playing techniques that are also denoted in the tablatures (Josel
et al. 2014). Finally, unlike REMI encodingwhere the note duration is provided right after
the note token (Y.-S. Huang et al. 2020), the DadaGP tokenisation uses wait tokens that
indicate the number of ticks to wait before playing the next note (960 ticks per quarter
note). This approach allows for shorter token sequences since a single wait token may
apply to multiple notes, while also being more robust than MIDI-like encodings since
every new note mutes the previous one (on the same instrument), suppressing the risk of
missing NOTE_OFF tokens.

To prepare the data for training, we follow a structured preprocessing pipeline that
ensures clean and well-formatted input sequences. The first step involves retrieving and
cleaning theDadaGPdataset, extracting tokens specific to selected instrumentswhile pre-
serving relevant note effect tokens and metadata. As we want to generate bass guitar tab-
latures conditioned on rhythm guitar, we developed a function to extract tokens specific
to those instruments. Preliminary experiments showed that reprocessing all GuitarPro
files one track at a time would have required unnecessarily high computational power
and time. To perform the extraction of instrument-specific tokens, we choose to filter to-
kens from the already existing files. We leverage the fact that tokens of a given instrument
start with the instrument name followed by a colon, e.g. “bass:” for the bass guitar, to
automatically detect such tokens. However, we must be careful not to miss the potential
note effect tokens that are not instrument-specific, but come right after the token they
are related to. After extracting those tokens and the general tokens (metadata tokens and
wait tokens), we sum any consecutivewait tokens thatwere previously separated by notes
from instruments that are no longer present (Figure 9.3). We end upwith 14 480 bass track
token files. We also remove bfx (bar effects, for tempo changes for instance) tokens to re-
duce the sequences’ complexity. Those bfx tokens are unrelated to the meter and have
no impact on the final rhythm conversion of the detokeniser algorithm. We consider that
removing bfx tokens is a minor simplification, as modifications like tempo changes can
always be added in a post-processing step if the guitarist needs them.

170

9.2. Data Preparation

wait:480

distorted0:note:s3:f5

distorted0:note:s5:f3

distorted1:note:s4:f10

distorted1:note:s5:f10

distorted1:note:s6:f8

bass:note:s3:f5

drums:note:44

drums:note:38

drums:note:37

drums:note:43

drums:note:35

wait:480

new_measure

distorted0:note:s3:f5

distorted0:note:s5:f3

bfx:tempo_change:80

drums:note:35

drums:note:43

bfx:tempo_change:120

wait:480

distorted0:note:s3:f5

distorted0:note:s5:f3

drums:note:44

drums:note:38

drums:note:37

wait:480

wait:480

bass:note:s3:f5

wait:480

new_measure

wait:3840

Figure 9.3: Example of an extraction of bass guitar tokens in Last Nite by The Strokes.

Rhythm guitar identification The method presented above allows us to extract tokens
for any instrument in the DadaGP dataset. While the bass guitar in WPM often estab-
lishes the low-end foundation and root notes of the chord progression, the rhythm gui-
tar complements this by providing the full harmonic voicings and rhythmic texture in a
higher frequency range. These characteristics makes rhythm guitar therefore particularly
relevant for conditioning bass generation tasks and are thus used as the input of our sys-
tem. Drum tracks could also provide the bass generation model with a strong rhythmic
foundation but, because our objective is to assist guitarist composers who do not play
the drums or bass, assuming a pre-existing drum track seems unrealistic. We therefore
decide to condition the generation of bass tablatures on rhythm guitar tablatures only.
Rhythm guitar tracks are identified using the methods from Régnier et al. (2021) like in
previous chapters.

9.2.2 Sequence Extraction and Filtering

To avoid sequences that are too long and that could not be processed by the model used
in this chapter (BiLSTM), we chose to extract sequences of 16 measures from the dataset’s
songs. We extract sequences with a sliding window of 8 measures, which allows for some
overlap between the sequences. This will help the model learn transitions between mea-
sure groups, and observe the various possible contexts around a given sequence.

171

Chapter 9. Conditional Bass Tablature Generation

Figure 9.4: Distribution of sequence lengths in the training dataset

Rhythm guitar
tokens

Embedding Dense
(linear) BiLSTM

Bass guitar
tokens

Embedding Dense
(linear)

Positional
encoding

Bass guitar
tokens

Encoder input

Decoder input

Transformer

Figure 9.5: Adapted implementation of the model from Makris et al. (2022).

Amaximum threshold of 800 tokens, and aminimum threshold of 50 tokenswere also
set to avoid training on sequences that are either too long or that almost do not contain
rhythm guitar or bass. Manual verification showed that no artists were discarded when
applying those thresholds. Figure 9.4 shows the distribution of sequence lengths in the
training dataset. The majority of the sequences are between 200 and 400 tokens long for
the rhythm guitar and between 100 and 300 tokens long for the bass. The final dictionary
of sequences is finally split into training, validation and test sets with proportions 0.8, 0.1
and 0.1 respectively. We ensure that all sequences from a same file are in the same subset,
to limit data-leakage risks. We extracted 118 167 sequences in total, which leads to 94 533
sequences in the training set and 11 817 in both the validation and test sets.

9.3 Method

We base our model on the conditional drum generation approach of Makris et al. (2022).
It is based on a bidirectional Long Short-Term Memory (BiLSTM) that first encodes the
input track (rhythm guitar in our case) before sending it to a Transformer Decoder with
Relative Global Attention (Y.-S. Huang et al. 2020) that generates the output tokens (the
bass guitar track).

172

9.3. Method

Figure 9.5 shows the model adapted to our task. Unlike the original implementation
that uses a Compound-Word architecture, we merge all encoders and process the input
tokens sequentially with a single encoder network to use the DadaGP tokenisation format
directly. The decoder network also generates tokens in a single sequence.

The Encoder processes rhythm guitar tokens using a BiLSTM network, allowing the
model to capture dependencies both forward and backward in the sequence. The BiL-
STM generates a latent variable I, which encodes both rhythmic and structural informa-
tion from the input sequence. This latent variable serves as a compressed representation
of the rhythm guitar part. The Decoder follows an autoregressive approach, predicting
each token sequentially. At each time step C − 1, the Decoder receives the previously gen-
erated token, embedded through a dense layer, along with the latent variable I from the
Encoder, which provides contextual information. The Decoder is based on a Transfor-
mer architecture with self-attention layers, allowing it to model long-range dependencies
within the generated sequence. Unlike standard Transformers that rely solely on absolute
positional encodings, it incorporates Relative Global Attention to enhance the model’s
ability to capture hierarchical musical structures. This mechanism enables the model to
account for both global position information and relative relationships between musical
events, which is crucial for generating coherent bass lines that align with the rhythm gui-
tar.

We set the relative attention window size to half of the total sequence length. This
balances local context within measures and global context across phrases, improving the
overall consistency of the generated bass lines. The final output of the Transformer De-
coder consists of relation-aware self-attention activations ℎC , which are passed through
a Dense layer followed by a softmax activation. Our adapted model consists of approx-
imately 21 million parameters, comparable to other large models such as the Pop Music
Transformer, which has around 41 million parameters (Y.-S. Huang et al. 2020). To train
ourmodel, we use a loss function based on categorical cross-entropy and an accuracymet-
ric designed for sequence modelling. The loss function measures how well the predicted
probability distribution aligns with the true tokens and is defined as:

ℒ(Ĥ , H) = −
)∑
C=1

 ∑
:=1

HC ,: log ĤC ,: (9.1)

where) is the sequence length, is the vocabulary size, HC ,: is the ground-truth to-
ken at time step C, and ĤC ,: is the predicted probability for token :. The ground-truth
token is the token that effectively appears in the original bass guitar sequence at time step
C. Our accuracy metric computes the proportion of correctly predicted tokens in a se-
quence. Both functions incorporate a masking mechanism to handle padding tokens and
remove their contribution to the calculations. While the reference bass sequence is by no
means the only valid answer in a musical sense, it is used during training as the expected
prediction of the model.

173

Chapter 9. Conditional Bass Tablature Generation

Implementation details The architecture is the same as Makris et al. (2022), with only
the sizes of the encoding and input/output layers adapted to our problem. The resulting
model contains 4 attention layers with 8 attention heads, with encoder and decoder em-
beddings being of size 240 and 192, respectively. The BiLSTM network has 1024 units in
total, 512 for each direction.

Training is done on GPU with an early-stopping criterion of 5 epochs without im-
provement on the validation loss. We use the Adam optimizer with the following hyper-
parameters:
 = 5 × 10−4, �1 = 0.9, �2 = 0.98, � = 10−9, and a batch size of 32.

9.4 Qualitative Analysis of the Generation

As this bass line generation tool is currently a proof-of-concept, this section focuses on
a qualitative analysis of generated bass guitar tablatures. While quantitative evaluation
methods are valuable for measuring model accuracy in well-defined tasks, they are less
suitable for assessing computational creativity tasks where multiple valid outputs may
exist (Jordanous 2012). For instance, edit distance or perplexity metrics only assess if
the generation is close to the reference, which does not measure the musical quality of
the output. Other high-level metrics might seem attractive, to measure harmonic and
rhythmic consistency for instance, but a bass playing “dissonant” notes or diverging from
the guitar’s rhythm are not necessarily wrong musical decisions. We thus choose to not
implement any automatic quantitativemetrics, as we believe theywould bring little value
to the current evaluation.

Themodel presented in this paper is designed to help guitarist composers generate id-
iomatic andmusically coherent bass lines given their composed rhythm guitar tablatures.
In this context, qualitative analysis provides more informative insights into the musical
relevance, performability, as well as the limitations of the generated bass lines (Ritchie
2019). Analyses were conducted by defining codes and assigning examples to each code.
The generations were explored randomly thanks to a demonstration website, and the ex-
ploration was stopped once no new codes seemed necessary to reflect the content of the
generated tablatures. The final categories were cross-checked by the other authors for fur-
ther grouping of similar codes. We are aware of the limitations and possible biases that
can occur from such subjective analyses with limited raters. Nevertheless, the evaluation
was conducted in an inductive way, meaning that codes emerged from the samples, and
were later linked with musical knowledge to reflect upon the model’s performance. By
making an exploration website publicly available,1 we leave to readers the opportunity to
check the generated samples freely, allowing them to verify our claims.

1https://github.com/adhooge/BassTablatureGeneration/, accessed in June 2025.

174

https://github.com/adhooge/BassTablatureGeneration/

9.4. Qualitative Analysis of the Generation

Figure 9.6: Generated example 518. Here, the bass plays full 16th notes even though the
guitar part is more sparse.

We detail the codes identified hereafter. First, we analyse the harmonic and rhythmic
consistency of the generated bass lines with respect to the conditioning guitar part. Sec-
ond, we assess the naturalness of the resulting tablatures in term of bass guitar technique,
focusing on physical playability and idiomatic movement across the instrument. Finally,
we examine the system’s ability to stay stylistically relevant to the guitar part. Each code
is illustrated by tablature excerpts and we also point to the identifiers of additional exam-
ples from the demonstration website with hyperlinked numbers in parentheses.2

9.4.1 Harmonic and Rhythmic Features

Wefirst observe that the generated bass tablatures can highlight chord tones evenwhen they
are not explicitly played in the guitar part. The bass also tends to fill voids and rests with
relevant rhythms and notes (ids 518, 1029, 1215, Figure 9.6). The generated bass parts can
also anticipate the upcoming guitar chords and play notes that match the upcoming key
(899). Notes that are unexpected in the current harmonic context can also be encountered,
even without being completely dissonant (1133, 1306). Rhythmically, the model has a ten-
dency to generate eighth notes, or sixteenth notes in a filling non-stop fashion (1151). Less
common rhythms can however be encountered, either following the guitar (873, 26) or di-
verging from it (172). Nonetheless, it happens that the bass is rhythmically consistent
with itself without really matching with the rhythm of the guitar (877). Another limita-
tion is that the bass part can be harmonically and rhythmically consistent but simplistic
(952). The model might benefit from more varied data where the bass diverges from the
guitar in an interesting way.

2You can also access each example by changing the website URL, e.g. for id 222: https://adhooge.github.
io/BassTablatureGeneration/?id=222, accessed in July 2025.

175

https://adhooge.github.io/BassTablatureGeneration/?id=518
https://adhooge.github.io/BassTablatureGeneration/?id=518
https://adhooge.github.io/BassTablatureGeneration/?id=1029
https://adhooge.github.io/BassTablatureGeneration/?id=1215
https://adhooge.github.io/BassTablatureGeneration/?id=899
https://adhooge.github.io/BassTablatureGeneration/?id=1133
https://adhooge.github.io/BassTablatureGeneration/?id=1306
https://adhooge.github.io/BassTablatureGeneration/?id=1151
https://adhooge.github.io/BassTablatureGeneration/?id=873
https://adhooge.github.io/BassTablatureGeneration/?id=26
https://adhooge.github.io/BassTablatureGeneration/?id=172
https://adhooge.github.io/BassTablatureGeneration/?id=877
https://adhooge.github.io/BassTablatureGeneration/?id=952
https://adhooge.github.io/BassTablatureGeneration/?id=222
https://adhooge.github.io/BassTablatureGeneration/?id=222

Chapter 9. Conditional Bass Tablature Generation

Figure 9.7: Generated example 209. While the guitar goes up the fretboard, the bassmoves
perpendicularly.

9.4.2 Gesture and Bass Guitar Idiomaticity

A satisfying observation is that the generated tablatures usually seem to replicate id-
iomatic bass guitar playing. For example, while the bass tends to replicate what the guitar
plays, it plays single notes rather than chords, that are harder and less common in bass guitar
(121, 126, 949). Playing techniques like dead notes can also be generated (22), as can be
slides or hammer-on and pull-off. Another important observation is that the tablatures
tend to contain moves perpendicular to the fretboard (209, 752, 1209, Figure 9.7) which is
more common among bass players, notes resonating more fully closer to the beginning of
the fretboard and limiting hand movements being an important consideration. Octave-
jumps are also typical bass-guitar playing and can be encountered (534, Figure 9.8) as well
as typical string-jumps (1275). It is also worth noting that the bass is not always playing
accompaniment and melodic parts are sometimes generated (917, 961, 1351). Similarly,
“transition” notes (1354) or chromatic notes (965), typically encountered in bass guitar
parts, are generated.

But the generated content can also be very repetitive (1119, 83, 474, 1067) and while
this can happen in actual WPM bass parts, it would be more interesting to generate parts
with more variation to suggest varied parts to guitar players. Finally, the bass can some-
times stays too close to the rhythmic guitar input, resulting in difficultly playable tabla-
tures with bends for instance (1167).

9.4.3 Stylistic Consistency

Agood example of how themodel adapts to differentmusical styles is onmetal subgenres,
largely represented in the DadaGP dataset. We observe that the generated bass matches
the required style by closely following the rhythm guitar (268, 288, 718, 719, Figure 9.9).
Likewise, rock music (or any subgenre) is usually well reproduced, closely following the
guitar part butwith additionalminor variations (844). Conversely, styles of guitar playing
that are less represented in DadaGP leads to less appropriate bass parts (1355), like when
more complex chords akin to jazz music are used by the guitar.

176

https://adhooge.github.io/BassTablatureGeneration/?id=209
https://adhooge.github.io/BassTablatureGeneration/?id=121
https://adhooge.github.io/BassTablatureGeneration/?id=126
https://adhooge.github.io/BassTablatureGeneration/?id=949
https://adhooge.github.io/BassTablatureGeneration/?id=22
https://adhooge.github.io/BassTablatureGeneration/?id=209
https://adhooge.github.io/BassTablatureGeneration/?id=752
https://adhooge.github.io/BassTablatureGeneration/?id=1209
https://adhooge.github.io/BassTablatureGeneration/?id=534
https://adhooge.github.io/BassTablatureGeneration/?id=1275
https://adhooge.github.io/BassTablatureGeneration/?id=917
https://adhooge.github.io/BassTablatureGeneration/?id=961
https://adhooge.github.io/BassTablatureGeneration/?id=1351
https://adhooge.github.io/BassTablatureGeneration/?id=1354
https://adhooge.github.io/BassTablatureGeneration/?id=965
https://adhooge.github.io/BassTablatureGeneration/?id=1119
https://adhooge.github.io/BassTablatureGeneration/?id=83
https://adhooge.github.io/BassTablatureGeneration/?id=474
https://adhooge.github.io/BassTablatureGeneration/?id=1067
https://adhooge.github.io/BassTablatureGeneration/?id=1167
https://adhooge.github.io/BassTablatureGeneration/?id=268
https://adhooge.github.io/BassTablatureGeneration/?id=288
https://adhooge.github.io/BassTablatureGeneration/?id=718
https://adhooge.github.io/BassTablatureGeneration/?id=719
https://adhooge.github.io/BassTablatureGeneration/?id=844
https://adhooge.github.io/BassTablatureGeneration/?id=1355

9.5. Conclusion

When the guitar is more melodic (which can happen even if the track is rhythm guitar
overall), the model still manages to suggest a bass track that matches the harmony and
the style of the melody (795, 499, 166, 588, Figure 9.10). However, the bass part can some-
times repeat itself too much andmiss mood changes (68), which looks like a mistake even
though it is up to musicians to decide if this is unacceptable. Another limitation to the
current system is that it sometimes seems to be late (725) or early (84) on following the
changes in the way the guitar plays.

9.5 Conclusion

In this chapter, we explored the conditional generation of bass guitar tablatures using a
transformer-based model trained on the DadaGP dataset. We implemented a detailed
data preprocessing pipeline, including instrument-specific token extraction, rhythm gui-
tar identification, and structured sequence formatting. Our approach enables the gener-
ation of bass lines that are harmonically and rhythmically coherent with a given rhythm
guitar part. Our results demonstrate that the model effectively captures the structural
role of the bass guitar in WPM, successfully aligning with the rhythmic and harmonic
elements of the accompaniment. However, we also identified certain limitations, such as
the model’s tendency to replicate rhythmic patterns excessively and being less idiomatic
in styles that are less represented in the dataset.

While our study establishes a strong foundation for conditioned bass tablature gener-
ation, further refinements in model design, data representation, and evaluation methods
could enhance its practical applicability. One potential enhancement is simplifying the
model by removing one of the dense layers in the embedding process, which could re-
duce complexitywithout significantly impacting performance. Additionally, experiment-
ing with compound word tokenisation as an alternative to the current DadaGP method
might yield more meaningful representations and help the model during the training
phase. To further improve the model’s flexibility and idiomaticity across diverse musi-
cal styles, we could fine-tune dedicated sub-models for specific styles or incorporate style
descriptor tokens during training to condition the generation on a target style.

Looking ahead, such a bass tablature generation tool should be evaluated by bass
players to assess the quality of the tablatures, and by guitar players who could rate its
usefulness. Because the validity of the tablatures is a subjective notion, an online survey
with pre-defined rhythm guitar tablaturesmight not allow participants to correctly assess
the capabilities of the model. Semi-guided interviews where guitarist composers have
access to the system and can use it freely and on specific tasks would probably yield more
relevant feedback.
All code and data to reproduce this work are shared publicly3 under GPL-3.0 (for the
code) and ODbL (for the data) licenses.

3https://github.com/adhooge/BassTablatureGeneration/, accessed in July 2025.

177

https://adhooge.github.io/BassTablatureGeneration/?id=795
https://adhooge.github.io/BassTablatureGeneration/?id=499
https://adhooge.github.io/BassTablatureGeneration/?id=166
https://adhooge.github.io/BassTablatureGeneration/?id=588
https://adhooge.github.io/BassTablatureGeneration/?id=68
https://adhooge.github.io/BassTablatureGeneration/?id=725
https://adhooge.github.io/BassTablatureGeneration/?id=84
https://github.com/adhooge/BassTablatureGeneration/

Chapter 9. Conditional Bass Tablature Generation

Figure 9.8: Generated example 534. Example of idiomatic octave jumps in the bass part.

Figure 9.9: Generated example 719. This is a fast metal excerpt, the bass follows the guitar
closely but reduces chords to single notes.

Figure 9.10: Generated example 588. Even though the guitar plays a melodic part, the
bass manages to make the underlying chords heard.

178

https://adhooge.github.io/BassTablatureGeneration/?id=534
https://adhooge.github.io/BassTablatureGeneration/?id=719
https://adhooge.github.io/BassTablatureGeneration/?id=588

Part IV

Conclusion and Perspectives

179

Summary of Contributions

Summary of Contributions

The contributions of this thesis focus on two core aspects of guitar practice inWPM: learn-
ing and composing.

Regarding guitar learning, this thesis introduced two approaches for assisting WPM
guitar players in their learning of the instrument by helping them navigate the ever-
increasing amount of learning materials available. In chapter 4, we built upon difficulty
ratings of songs to devise a recommendation system for guitar learners, based on an es-
timation of their current level. This system was designed and evaluated in collaboration
with a guitar teacher, and is deployed in a commercial application that will allow to gar-
ner user feedback for future improvements. Chapter 5 extended existing work on song
difficulty analysis to guitar and bass tablatures, based on a newly gathered dataset and de-
tailed analyses of possible difficulty-related features. Using a Naive-Bayes model yielded
satisfactory results for difficulty prediction but questions persist on which visualisations
and features would be most helpful to learners.

Regarding composition, this thesis presented various methods destined to help gui-
tarists compose with tablatures, with the objective to change the current usage of tabla-
ture notation as a means of learning and communication. In chapter 1, we presented the
specificities of tablature notation and how it is used by WPM guitarists. In particular, we
argued that guitar players rarely use tablature notation while composing, motivating our
research on AI methods that could make composition within tablature notation software
more appealing. After introducing the ML techniques used throughout this thesis (chap-
ter 2), we showed in chapter 3 that while research on guitar tablatures for automatic tran-
scription or generation has been studied, little importance was given to composers and
how they might benefit from this research. In an effort to assist composers, we proposed
new models that can help writing both lead guitar and rhythm guitar parts. For lead
guitar, chapter 6 presented a method to suggest where to add guitar playing techniques
in a tablature, with the objective to make the resulting song more idiomatic. Improving
the parsing of bends also led to a contribution to the music21 Python library.1 Focusing
on bends, we showed that they can be modelled and suggested efficiently, with a model
that can ultimately be integrated in tablature notation softwarewith gradual controls. For
rhythm guitar, chapter 7 analysed how chords are played on guitar to design amodel that
can suggest appropriate chord positions fromminimal context. Chapter 8 was built upon
this previous work and presented two models for suggesting picking patterns that, com-
bined with a chord progression and the corresponding positions, can propose possible
continuations to a rhythm guitar prompt in tablature format. Finally, chapter 9 studied
a transformer model to provide guitar composers with a possible bass accompaniment,
in tablature format, given a rhythm guitar tablature they composed. Overall, the models
presented were evaluated quantitatively when possible, i.e. when clear metrics could be

1https://github.com/cuthbertLab/music21/pull/1580, accessed in July 2025.

181

https://github.com/cuthbertLab/music21/pull/1580

Summary of Contributions

used to assess performance. Some metrics were newly introduced in this thesis, for in-
stance to describe the texture of guitar tablatures. However, themusical tasks studied also
often called for qualitative analyses of the results. Most were conducted by the authors,
based on their own musical expertise except for Chapter 8 that was evaluated by external
participants through an online questionnaire.

We conclude this thesis with perspectives on new research that could be conducted
to further the contributions of this thesis.

182

Perspectives

Perspectives

The research presented in this thesis tackled some of the tasks identified to assist gui-
tarists when learning or composing, but also opened perspectives on new tasks that could
be studied. This section presents those perspectives, starting from improvements to the
thesis’ contributions and generalising to new tasks.

Improving Usability The tools presented in this thesis would need some refining be-
fore being deployed for guitarists to use them. The key limitation of our current systems
is that most need programming knowledge to be used, which would exclude many gui-
tarists. Next steps therefore include making the systems more user-friendly by directly
including them in tablature notation software. In that regard, Léo Dupouey worked as
a research engineer to integrate some of the suggestion tools to a tablature viewer based
on alphaTab2 (Figure 6.19) and a second research engineer might continue his work to fur-
ther deploy the models, in the scope of the ANR TABASCO project. Ultimately, the AI
models presented in this thesis might be of interest to the open-source developer commu-
nity, to be integrated in Musescore or TuxGuitar for instance. Proprietary websites and
software could also be interested in deploying such tools, be it for difficulty evaluation
(Songsterr, UltimateGuitar) or assisted composition (Guitar Pro). Integration of the mod-
els presented in this thesis to existing software and websites would be an ideal scenario,
as it would make them available to a wide range of guitarists without requiring them to
add new tools in their workflow.

Improving Computational Efficiency The models’ efficiency should also be improved
as much as possible to reduce the computational load and time required to generate re-
sults, to permit their usage on a wide range of users’ devices. Indeed, some of the models
used in this thesis like the bass tablature generation one (chapter 9) need to be ran onGPUs
and require several dozens seconds to produce a result, limiting their usability by musi-
cians. Implementing methods like pruning, quantisation or model distillation are pos-
sibilities to increase the computational efficiency of the models. It would also be worth
for future work to consider new performance metrics in the development phase of AI
models, to evaluate models both in terms of evaluation metrics and energy requirements.
This is important because the energy consumption of AI models is far from negligible.
For instance, the contributions presented in this thesis were estimated to have required
1 MWh of energy in total, from the early experimentations to the final inferences on test
sets. More explanations that led to this final figure as well as more performance metrics
can be found in Appendix B.

2https://alphatab.net/, accessed in June 2025.

183

https://alphatab.net/

Perspectives

Subjective Evaluations Once the models are deployed in tablature notation software,
they should be evaluated subjectively. Online studies could be deployed, but in-depth
ethnographic interviews with guitar composers would be ideal, replicating the prelim-
inary studies conducted by Baptiste Bacot (Bacot 2023; Bacot et al. 2024) by conducting
semi-guided interviews and other qualitative methods where participants can use the
proposed tools for a few hours. Such prolonged use would clearly expose the strengths
and weaknesses of the models designed, and provide additional guidance for future im-
provements.

Studying New Tasks Many new ways of assisting the composition of guitar tablatures
could also be studied, like inpainting (Hadjeres et al. 2021) or overpainting (Row et al. 2023)
to suggest variations on an existing tablature. One could also imagine a model for sug-
gesting riffs or solo licks, to help guitarists consider playing styles they are less familiar
with, with uncommon rhythm or chords for the former, or new scales and modes for the
latter. Another promising task to studywould be to combine our tablature difficulty anal-
ysis model with generation systems to allow for arranging a song into different difficulty
levels, similarly to what has already been studied for piano scores (Gover et al. 2022).
It might also be interesting to analyse the playing difficulty of tablatures to provide the
players with exercises focusing on those difficult aspects, either drawing them from a pre-
assembled database, or generating them on-demand by deriving them from the tablature
studied.

Computational Musicology Studies of Guitar Tablatures Considering a different ap-
proach, many computational musicology studies could be conducted on the tablature
data available to improve our understanding of the guitar WPM repertoire. As done by
Sarmento et al. 2023b, one could analyse tablatures to determine whether famous gui-
tarists styles are detectable directly from transcriptions, or if some artists are better identi-
fied by performance aspects currently not captured by tablatures such as dynamics, effect
pedals, or special performing gestures. While some analyses on the datasets were con-
ducted in this thesis, the thousand of tablatures available could provide more insights on
guitar WPM. It would also be interesting to compare multiple tablature transcriptions of
the same song, to determine why multiple versions can exist as it might reflect different
perspectives on the transcription ofWPM. Furthermore, one could imagine studying spe-
cific subsets of the DadaGP dataset, for instance only bands with female players, to see
if specific trends emerge from those songs compared to the majority of bands with only
male players.

Towards Multimodal Tablature Research Future work might benefit from adopting
a multimodal approach, i.e. combining symbolic tablature data with audio or video
recordings. By doing so, one might combine Automatic Music Transcriptionmodels with
tablature-based models to directly suggest modifications or additions to what a guitarist

184

Perspectives

just played. Incorporating audio data could also allow tablature models to benefit from
performance data currently absent from (most) tablature notation, like dynamics or effect
pedals. Video recordings could also be used to enhance models for fingering prediction
(what finger plays what note on the fretboard) or strumming directions for chords. With
advancedmultimodal models, one could even imagine interactive digital agents that gen-
erate tablatures and play them through digital instruments, for a guitarist to interact with
while playing music. Considering a model that could dynamically react to what the gui-
tarist plays, it could provide suggestions, alternatives or co-create in tablature or audio
format in a way that does not require popular music guitar players change the way they
usually compose songs, which is by jamming individually or in a band (Bacot et al. 2024;
L. Green 2002).

Supporting Artists and Limiting Plagiarism All those perspectives would greatly ben-
efit from a new multimodal dataset that contains tablatures, video and audio recordings
from different contexts. It would be particularly beneficial to the community that such
a dataset is assembled with the artists’ consent, to guarantee that its usage is legal for
all (or most) research applications, and to participate in strengthening the link between
artists (and the general public) and the AI research community in contexts where distrust
can increase. Indeed, it is unclear under current EU law if generative AI models can be
trained on copyrighted data without the authors’ consent. Possible risks of plagiarism
also exist and should be considered, as generative AI models can sometimes memorise
and reproduce part of their training set identically. More details on EU law regarding AI
and possible risks of plagiarism of the contributions of this thesis are provided in Ap-
pendix C.

Reflect upon the Interactions between AI and Guitarists Finally, while all models pre-
sented in this thesis are designed to help guitar learners and composers, AI tools can be
a source of distrust between scientists and artists. Even though we consider that the con-
tributions presented are unlikely to impact artists or music teachers negatively because
of the specific tasks they focus on, collecting subjective feedback would strengthen those
claims. Ultimately, AI music models should be developed iteratively with musicians, to
ensure that the models actually support the creative process, rather than models that cre-
ate artificial needs. AI distrust and the possible risks of the contributions of this thesis
replacing guitarists are discussed further in Appendix D. Overall, we believe that well-
designedAImethods have the potential to contribute significantly to co-creative practices.
For musicians to notice their potential and overcome the reluctance of using AI in their
work, a focus should be put on developing transparent and understandable models that
might even lead more people to start learning, performing and composing music.

185

Bibliography

ABRSM (2021). Music Performance Grades: Guitar (cit. on pp. 90, 92).
AC/DC, ed. (2008). Black Ice. Wise Publications (cit. on p. 21).
Adkins, S. et al. (2023). “LooperGP: A Loopable Sequence Model for Live Coding Perfor-

mance Using GuitarPro Tablature”. In: Proc. of the Int. Conf. on Computational Intelli-
gence in Music, Sound, Art and Design (EvoMUSART) (cit. on pp. 50, 61, 144, 146).

Agostinelli, A. et al. (2023). MusicLM: Generating Music From Text. Pre-published (cit. on
p. 57).

Alammar, J. (2018). The Illustrated Transformer. url: https://jalammar.github.io/illustrated-

transformer/ (visited on 2025-04) (cit. on p. 41).
Alonso-Jiménez, P. et al. (2023). “Efficient Supervised Training of Audio Transformers for

Music Representation Learning”. In: Proc. of the 24th Int. Society for Music Information
Retrieval Conf. (ISMIR) (cit. on pp. 38, 88).

Anoufa, O. et al. (2025). “Conditional Generation of Bass Guitar Tablature for Guitar Ac-
companiment in Western Popular Music”. In: Proc. of the AI Music Creativity Conf.
(AIMC) (cit. on pp. 8, 167).

Apel, W. (1942). The Notation of Polyphonic Music, 900-1600. Cambridge, Mass., Mediaeval
Academy of America (cit. on pp. 12, 14, 19).

Ariga, S. et al. (2017a). “Song2Guitar: A Difficulty Aware Arrangement System for Gen-
erating Guitar Solo Covers from Polyphonic Audio of Popular Music”. In: Proc. of the
18th Int. Society for Music Information Retrieval Conf. (ISMIR) (cit. on pp. 4, 53, 61, 63).

Ariga, S. et al. (2017b). “Strummer: An Interactive Guitar Chord Practice System”. In: Proc.
IEEE Int. Conf. on Multimedia and Expo (ICME) (cit. on pp. 4, 53, 64).

Arobas-Music (2025). Guitar Pro - Logiciel d’édition de Tablatures Pour Guitare, Basse, Piano,
Batterie et Plus... url: https://www.guitar-pro.com/fr/ (visited on 2025-02) (cit. on p. 15).

Arsenault, D. (2008). “Guitar Hero:” Not like Playing Guitar at All”?” In: Loading... 2.2
(cit. on pp. 65, 66).

Artist RightsAlliance (2024). 200+ArtistsUrge Tech Platforms: StopDevaluingMusic.Medium.
url: https://artistrightsnow.medium.com/200-artists-urge-tech-platforms-stop-devaluing-

music-559fb109bbac (visited on 2025-05) (cit. on p. 221).

187

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://www.guitar-pro.com/fr/
https://artistrightsnow.medium.com/200-artists-urge-tech-platforms-stop-devaluing-music-559fb109bbac
https://artistrightsnow.medium.com/200-artists-urge-tech-platforms-stop-devaluing-music-559fb109bbac

Bibliography

Assayag, G. et al. (2006). “OMax Brothers: A Dynamic Topology of Agents for Improviza-
tion Learning”. In: Proc. of the 1st ACMWorkshop on Audio and Music Computing Multi-
media (cit. on p. 58).

Bacot, B. (2023). Composing with Tablature Software: An Inquiry. url: https://hal.science/hal-
04432306 (visited on 2025-01). Pre-published (cit. on pp. 144, 184).

Bacot, B. et al. (2024). “EnjeuxDuLogiciel de TablaturesDans l’acte deCréationEnMusiques
Actuelles : Méthode d’entretien et Analyse d’une Pratique”. In:Actes Des Journées d’In-
formatique Musicale (JIM) (cit. on pp. 3, 6, 20, 22, 123, 148, 165, 167, 168, 184, 185).

Baldwin, B. (2022). The Gearbox Interview: Becky Baldwin – Bass Guitarist. url: https : / /

devolutionmagazine.co.uk/2022/06/03/gearbox-interview-becky-baldwin-bass-guitarist

(cit. on p. 167).
Balman, F. (2020). Tablature Disdain: Music Pedagogues’ Preference for Staff Notation and Its

Impact on the Average Guitarist. Pre-published (cit. on p. 11).
Barbancho, A. M. et al. (2012). “Automatic Transcription of Guitar Chords and Fingering

From Audio”. In: IEEE Transactions on Audio, Speech, and Language Processing 20.3 (cit.
on p. 138).

Barbancho, I. et al. (2014). “Estimation of the Direction of Strokes and Arpeggios”. In:
Proc. of the 15th Int. Society for Music Information Retrieval Conf. (ISMIR) (cit. on p. 163).

Barenboim, G. et al. (2024). “Exploring How a Generative AI Interprets Music”. In:Neural
Computing and Applications 36.27 (cit. on p. 57).

Barthet, M. et al. (2011). “Music Recommendation for Music Learning: Hottabs, a Multi-
media Guitar Tutor”. In:Workshop onMusic Recommendation andDiscovery (WOMRAD)
(cit. on pp. 3, 15, 64).

Bas, C. L. (2020). “Frugal Innovation as Environmental Innovation”. In: International Jour-
nal of Technology Management 83.1–3 (cit. on p. 215).

Batlle-Roca, R. et al. (2024). “Towards Assessing Data Replication in Music Generation
with Music Similarity Metrics on RawAudio”. In: Proc. of the 25th Int. Society for Music
Information Retrieval Conf. (ISMIR) (cit. on pp. 148, 219, 220).

Beato, R., director (2021). TheModern Guitar Discussion w/ Tosin Abasi, Tim Henson &Misha
Mansoor. url: https://www.youtube.com/watch?v=6wb4AcfXSyo (visited on 2025-05)
(cit. on p. 105).

Bertrand, F. (1998). “La « Composition » Pour Guitare Dans Le Rock’n’roll : Problèmes
d’Analyse”. In: Musurgia 5.2 (cit. on p. 20).

Bimbot, F. et al. (2016). “System & Contrast”. In: Music Perception 33.5 (cit. on pp. 18, 145,
147, 151, 152).

Blalock, D. et al. (2020). “What Is the State of Neural Network Pruning?” In: Proc. of the
3rd MLSys Conf. (Cit. on p. 215).

Bontempi, P. (2025). “An Innovative Computer-BasedModel for theGeneration of Expres-
sive Lead Guitar Performances”. PhD thesis. Università degli Studi di Padova (cit. on
pp. 106, 107).

188

https://hal.science/hal-04432306
https://hal.science/hal-04432306
https://devolutionmagazine.co.uk/2022/06/03/gearbox-interview-becky-baldwin-bass-guitarist
https://devolutionmagazine.co.uk/2022/06/03/gearbox-interview-becky-baldwin-bass-guitarist
https://www.youtube.com/watch?v=6wb4AcfXSyo

Bibliography

Bontempi, P. et al. (2024). “From MIDI to Rich Tablatures: An Automatic Generative Sys-
tem Incorporating LeadGuitarists’ Fingering and Stylistic Choices”. In: Proc. of the 21st
Sound and Music Computing Conf. (SMC) (cit. on pp. 7, 106).

Born, G. et al. (2021). Artificial Intelligence, Music Recommendation, and the Curation of Cul-
ture. White Paper. url: http://hdl.handle.net/1807/129105 (visited on 2025-07) (cit. on
p. 3).

Bosch, J. J. et al. (2012). “AComparison of Sound Segregation Techniques for Predominant
Instrument Recognition in Musical Audio Signals”. In: Proc. of the 13th Int. Society for
Music Information Retrieval Conf. (ISMIR) (cit. on p. 46).

Bosseur, J.-Y. (2005). Du son au signe : histoire de la notation musicale. Editions Alternatives
(cit. on p. 19).

Braun, V. et al. (2006). “Using Thematic Analysis in Psychology”. In: Qualitative Research
in Psychology 3.2 (cit. on p. 162).

Breiman, L. (2017). Classification and Regression Trees. Routledge (cit. on p. 117).
Breiman, L. et al. (1984). Classification and Regression Trees. Chapman and Hall/CRC (cit.

on p. 32).
Briot, J.-P. et al. (2019). Deep Learning Techniques for Music Generation – A Survey. Pre-

published (cit. on p. 58).
Briot, J.-P. et al. (2020). Deep Learning Techniques for Music Generation. Computational Syn-

thesis and Creative Systems. Springer Nature Switzerland (cit. on pp. 29, 34).
Burgoyne, J. A. et al. (2011). “An Expert Ground-Truth Set for Audio Chord Recognition

andMusic Analysis”. In: Proc. of the 12th Int. Society forMusic Information Retrieval Conf.
(ISMIR) (cit. on pp. 53, 54, 70).

Burgoyne, J. A. et al. (2015). “Music Information Retrieval”. In:ANew Companion to Digital
Humanities. John Wiley & Sons, Ltd (cit. on p. 1).

Cabral, G. et al. (2005). “Automatic X Traditional Descriptor Extraction: TheCase of Chord
Recognition”. In: Proc. of the 6th Int. Society forMusic Information Retrieval Conf. (ISMIR)
(cit. on p. 46).

Cádiz, R. F. et al. (2021). “Creativity in GenerativeMusical Networks: Evidence From Two
Case Studies”. In: Frontiers in Robotics and AI 8 (cit. on p. 57).

Cavanagh, T. (2019).What InspiredDiceyDungeons?distractionware. url: https://distractionware.

com/blog/2019/08/4-what-inspired-dicey-dungeons/ (visited on 2025-02) (cit. on p. 45).
Challis, B. (2009). The Song Remains the Same: A Review of the Legalities of Music Sampling.

WIPO. url: https://www.wipo.int/web/wipo-magazine/article-details/?assetRef=37091

&title=the-song-remains-the-same-a-review-of-the-legalities-of-music-sampling (visited
on 2025-05) (cit. on p. 219).

Chan, T. F. et al. (1982). “Updating Formulae and a Pairwise Algorithm for Computing
Sample Variances”. In: COMPSTAT 1982 5th Symposium Held at Toulouse. Ed. by H.
Caussinus et al. Physica-Verlag HD (cit. on p. 98).

Chatti, M. A. et al. (2024). “Visualization for Recommendation Explainability: A Survey
and New Perspectives”. In: ACM Trans. Interact. Intell. Syst. 14.3 (cit. on p. 99).

189

http://hdl.handle.net/1807/129105
https://distractionware.com/blog/2019/08/4-what-inspired-dicey-dungeons/
https://distractionware.com/blog/2019/08/4-what-inspired-dicey-dungeons/
https://www.wipo.int/web/wipo-magazine/article-details/?assetRef=37091&title=the-song-remains-the-same-a-review-of-the-legalities-of-music-sampling
https://www.wipo.int/web/wipo-magazine/article-details/?assetRef=37091&title=the-song-remains-the-same-a-review-of-the-legalities-of-music-sampling

Bibliography

Chawla, N. V. et al. (2002). “SMOTE: Synthetic Minority Over-sampling Technique”. In:
Journal of Artificial Intelligence Research 16 (cit. on p. 116).

Chemla–Romeu-Santos, A. et al. (2022). “Challenges in Creative Generative Models for
Music: A Divergence Maximization Perspective”. In: Proc. of the AI Music Creativity
Conf. (AIMC) (cit. on p. 57).

Chen, Y.-H. et al. (2020). “Automatic Composition of Guitar Tabs by Transformers and
Groove Modeling”. In: Proc. of the 21st Int. Society for Music Information Retrieval Conf.
(ISMIR) (cit. on pp. 5, 51, 54, 60, 152).

Chen, Y.-H. et al. (2022). “Towards Automatic Transcription of Polyphonic Electric Guitar
Music: A New Dataset and a Multi-Loss Transformer Model”. In: IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP) (cit. on pp. 46, 55).

Chen, K. et al. (2020). “Music Sketchnet: Controllable Music Generation via Factorized
Representations of Pitch and Rhythm”. In: Proc. of the 21st Int. Society for Music Infor-
mation Retrieval Conf. (ISMIR) (cit. on p. 58).

Chen, T.-P. et al. (2020). “Chord Jazzification: Learning Jazz Interpretations of Chord Sym-
bols”. In: Proc. of the 21st Int. Society for Music Information Retrieval Conf. (Cit. on p. 129).

Chen,W. et al. (2019). “Data Usage inMIR: History & Future Recommendations”. In: Proc.
of the 20th Int. Society for Music Information Retrieval Conf. (ISMIR) (cit. on p. 219).

Cheng, J. et al. (2008). “A Neural Network Approach to Ordinal Regression”. In: Proc. of
the IEEE Int. Joint Conf. on Neural Networks (IJCNN) (cit. on p. 97).

Chiu, S.-C. et al. (2012). “A Study on Difficulty Level Recognition of Piano Sheet Music”.
In: IEEE International Symposium on Multimedia (cit. on pp. 63, 90, 92).

Cho, K. et al. (2014). “Learning Phrase Representations Using RNN Encoder-Decoder for
Statistical Machine Translation”. In: Proc. of the Conf. on Empirical Methods in Natural
Language Processing (EMNLP) (cit. on p. 40).

Choudhury, M. (2023). “Generative AI Has a Language Problem”. In: Nature Human Be-
haviour 7.11 (cit. on p. 57).

Coffman, T. (2023). James Hetfield Is the Greatest Rhythm Guitarist of All Time. Far Out. url:
https : / / faroutmagazine . co . uk /hear -me -out - james -hetfield - is - the - greatest - rhythm-

guitarist-of-all-time/ (visited on 2025-02) (cit. on p. 23).
Colton, S. et al. (2012). “Computational Creativity: The Final Frontier?” In: Proc. of the 20th

European Conf. on Artificial Intelligence (ECAI’12) (cit. on p. 57).
Cooper, A. F. et al. (2023). Report of the 1st Workshop on Generative AI and Law (cit. on pp. 26,

28).
Cooper, A. F. et al. (2024). The Files Are in the Computer: Copyright, Memorization, and Gen-

erative AI. Pre-published (cit. on pp. 217, 219).
Corder, G. W. et al. (2009). Nonparametric Statistics for Non-Statisticians: A Step-by-Step Ap-

proach. John Wiley & Sons (cit. on p. 89).
Cournut, J. et al. (2020). “Encodages de Tablatures Pour l’analyse de Musique Pour Gui-

tare”. In: Actes Des Journées d’Informatique Musicale (JIM) (cit. on pp. 2, 17, 48, 50).

190

https://faroutmagazine.co.uk/hear-me-out-james-hetfield-is-the-greatest-rhythm-guitarist-of-all-time/
https://faroutmagazine.co.uk/hear-me-out-james-hetfield-is-the-greatest-rhythm-guitarist-of-all-time/

Bibliography

Cournut, J. et al. (2021). “What Are the Most Used Guitar Positions?” In: 8th Int. Conf. on
Digital Libraries for Musicology (DLFM’21) (cit. on pp. 2, 5, 48, 52).

Couturier, L. (2024). “Modélisation InformatiqueDeLaTexture Pour L’analyseDeMusique
Symbolique Et L’aide À La Composition.” PhD thesis. Université de Picardie Jules
Verne. url: https://theses.fr/s301124 (visited on 2025-06) (cit. on p. 140).

Couturier, L. et al. (2023). “Comparing Texture in Piano Scores”. In: Proc. of the 24th Int.
Society for Music Information Retrieval Conf. (ISMIR) (cit. on p. 146).

Craig, C. (2022). “TheAI-Copyright Challenge: Tech-Neutrality, Authorship, and the Pub-
lic Interest”. In: All Papers 360 (cit. on p. 219).

Craig, C. J. (2024). “The AI-Copyright Trap”. In: Osgoode Legal Studies Research Paper (cit.
on p. 218).

Craig, C. J. et al. (2021). “The Death of the AI Author”. In: Ottawa Law Review 52.1 (cit. on
p. 220).

Cui, W. et al. (2024). “MoodLoopGP: Generating Emotion-Conditioned Loop Tablature
Music with Multi-Granular Features”. In: Proc. of the Int. Conf. on Computational Intel-
ligence in Music, Sound, Art and Design (EvoMUSART) (cit. on pp. 50, 61).

Cunha, N. et al. (2018). “Generating Guitar Solos by Integer Programming”. In: Journal of
the Operational Research Society 69.6 (cit. on pp. 56, 60).

Cuthbert, M. S. et al. (2010). “Music21: A Toolkit for Computer-Aided Musicology and
Symbolic Music Data”. In: Proc. of the 11th Int. Society for Music Information Retrieval
Conf. (ISMIR) (cit. on pp. 17, 48, 113).

Cwitkowitz, F. et al. (2022). “A Data-DrivenMethodology for Considering Feasibility and
Pairwise Likelihood inDeep Learning BasedGuitar Tablature Transcription Systems”.
In: Proc. of the 19th Sound and Music Computing Conf. (SMC) (cit. on p. 50).

D’Hooge, A. et al. (2023a). “Modeling Bends in PopularMusic Guitar Tablatures”. In:Proc.
of the 24th Int. Society for Music Information Retrieval Conf. (ISMIR) (cit. on pp. 7, 105).

— (2023b). “Rhythm Guitar Tablature Continuation from Chord Progression and Tabla-
ture Prompt”. In:Digital Music Research Network One-dayWorkshop (DMRN+18) (cit. on
p. 142).

D’Hooge, A. et al. (2024a). “Guitar Chord Diagram Suggestion for Western Popular Mu-
sic”. In: Proc. of the 21st Sound and Music Computing Conf. (SMC) (cit. on pp. 7, 127).

D’Hooge, A. et al. (2024b). “Suggestions Pédagogiques Personnalisées Pour La Guitare”.
In: Actes Des Journées d’Informatique Musicale (JIM) (cit. on pp. 8, 69, 86).

Dahia, M. et al. (2004). “Using Patterns to Generate Rhythmic Accompaniment for Gui-
tar”. In: Actes Des Journées d’Informatique Musicale (JIM) (cit. on pp. 53, 59).

Dai, Z. et al. (2019). “Transformer-XL: Attentive LanguageModels Beyond a Fixed-Length
Context”. In: Proc. of the 57th AnnualMeeting of the Association for Computational Linguis-
tics (cit. on p. 60).

Dalitz, C. et al. (2013). “From Facsimile to Content Based Retrieval: The Electronic Corpus
of Lute Music”. In: Phoibos - Zeitschrift für Zupfmusik 2 (cit. on p. 13).

191

https://theses.fr/s301124

Bibliography

Dalmazzo, D. et al. (2024a). “ChromaFlow: Modeling and Generating Harmonic Progres-
sions with a Transformer and Voicing Encoding”. In:MML 2024: 15th Int. Workshop on
Machine Learning and Music. url: https://hal.science/hal-04710950 (cit. on p. 129).

— (2024b). “The Chordinator: Modeling Music Harmony By Implementing Transformer
Networks and Token Strategies”. In: Proc. of the Int. Conf. on Computational Intelligence
in Music, Sound, Art and Design (EvoMUSART) (cit. on pp. 129, 147).

Dart, T. et al. (2001). Tablature. Vol. 1. Oxford University Press (cit. on pp. 12, 19).
Das, O. et al. (2018). “Analyzing and Classifying Guitarists from Rock Guitar Solo Tab-

lature”. In: Proc. of the 15th Sound and Music Computing Conf. (SMC) (cit. on pp. 51,
54).

Déguernel, K. et al. (2022). “Personalizing AI for Co-Creative Music Composition from
Melody to Structure”. In: Proc. of the 19th Sound and Music Computing Conf. (SMC) (cit.
on p. 58).

Déguernel, K. et al. (2023). “Emotion, Motion, and Abstract Notions: Insights in the Role
of Imagination in ProfessionalMusicians Practices from Semi-Guided Interviews”. In:
Proc. of the Int. Conf. on Music Perception and Cognition (ICMPC) (cit. on p. 62).

De Prisco, R. et al. (2016). “Visualization of Music Plagiarism: Analysis and Evaluation”.
In: Proc. of the 20th Int. Conf. Information Visualisation (IV) (cit. on p. 220).

De Sa, V. (1993). “Learning Classification with Unlabeled Data”. In: Advances in Neural
Information Processing Systems (cit. on p. 29).

Devlin, J. et al. (2019). “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Proc. of the 2019 Conf. of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. arXiv (cit. on
p. 42).

Dhariwal, P. et al. (2020). Jukebox: AGenerativeModel forMusic. Pre-published (cit. on p. 57).
Dib, L. (2024). “Formal Definition of Interpretability and Explainability in XAI”. In: Intel-

ligent Systems and Applications (IntelliSys). Springer, Cham (cit. on p. 31).
Dickinson, S. (2019). “Building From Within: A Harmonic Self-Help Guide For Guitar

Chord Voicings, Their Densities, and Applications”. Doctoral Essay. University of Mi-
ami (cit. on p. 221).

Dornis, T. W. et al. (2025). Generative AI Training and Copyright Law. Pre-published (cit. on
pp. 218, 219).

Douwes, C. et al. (2021).EnergyConsumption ofDeepGenerativeAudioModels. Pre-published
(cit. on p. 213).

Downie, J. S. (2003). “Music Information Retrieval”. In: Annual Review of Information Sci-
ence and Technology 37 (cit. on p. 1).

Edwards, D. et al. (2024). “MIDI-to-Tab: Guitar Tablature Inference via Masked Language
Modeling”. In: Proc. of the 25th Int. Society for Music Information Retrieval Conf. (ISMIR)
(cit. on pp. 5, 50, 61, 109, 122).

Eiben, A. E. et al. (2010). Introduction to Evolutionary Computing. Natural Computing Series.
Springer (cit. on p. 61).

192

https://hal.science/hal-04710950

Bibliography

Eichner, M. et al. (2006). “Instrument Classification Using Hidden Markov Models”. In:
Proc. of the 7th Int. Society for Music Information Retrieval Conf. (ISMIR) (cit. on p. 46).

Eldby, T. (2021). “Investigating Representation of Tablature Data for NLP Music Predic-
tion”. MA thesis. UiT Norges arktiske universitet (cit. on pp. 50, 54).

Elowsson, A. et al. (2013). “Modelling Perception of Speed in Music Audio”. In: Proc. of
the 10th Sound and Music Computing Conf. (SMC) (cit. on p. 70).

Ens, J. et al. (2020). MMM : Exploring Conditional Multi-Track Music Generation with the
Transformer. Pre-published (cit. on p. 58).

Eremenko, V. et al. (2020). “Performance Assessment Technologies for the Support of Mu-
sical Instrument Learning”. In: Proc. of the 12th Int. Conf. on Computer Supported Educa-
tion (CSEDU) (cit. on pp. 71, 82).

Faul, F. et al. (2007). “G*Power 3:A Flexible Statistical Power Analysis Program for the
Social, Behavioral, and Biomedical Sciences”. In: Behavior Research Methods 39.2 (cit.
on p. 159).

Ferretti, S. (2016). “Guitar Solos as Networks”. In: Proc. IEEE Int. Conf. on Multimedia and
Expo (ICME) (cit. on pp. 51, 53).

Fitch, W. T. et al. (2007). “Perception and Production of Syncopated Rhythms”. In: Music
Perception 25.1 (cit. on p. 91).

Furcy, D. et al. (2005). “Limited Discrepancy Beam Search”. In: Proc. of the 19th Int. Joint
Conf. on Artificial Intelligence (IJCAI) (cit. on p. 84).

Garcia, E. et al. (2007). “The Evolution of Robotics Research”. In: IEEE Robotics & Automa-
tion Magazine 14.1 (cit. on p. 26).

Gelling, P. (2003). Learn to Play Lead Guitar Manual: Progressive Complete. LearnToPlayMu-
sic.com Pty Limited (cit. on p. 20).

Gholami,A. et al. (2021). “A Survey ofQuantizationMethods for EfficientNeuralNetwork
Inference”. In: Low-Power Computer Vision. Chapman and Hall/CRC (cit. on p. 216).

Giraud,M. et al. (2014). “TowardsModeling Texture in Symbolic Data”. In: Proc. of the 15th
Int. Society for Music Information Retrieval Conf. (ISMIR). url: https://hal.science/hal-010
57017 (visited on 2023-08) (cit. on pp. 31, 140).

Goertzel, B. (2014). “Artificial General Intelligence: Concept, State of the Art, and Future
Prospects”. In: Journal of Artificial General Intelligence 5.1 (cit. on p. 26).

Gomez, P. J. (2016). “Modern Guitar Techniques; a View of History, Convergence of Mu-
sical Traditions and Contemporary Works (A Guide for Composers and Guitarists)”.
PhD thesis. UC San Diego (cit. on pp. 20, 108).

Goodfellow, I. et al. (2016).Deep Learning. Adaptive Computation and Machine Learning.
The MIT Press (cit. on pp. 28–30, 34).

Gotham, M. et al. (2023). “When in Rome: A Meta-corpus of Functional Harmony”. In:
Transactions of the Int. Society for Music Information Retrieval 6.1 (cit. on p. 31).

Gover, M. et al. (2022). “Music Translation: Generating Piano Arrangements in Different
Playing Levels”. In: Proc. of the 23rd Int. Society for Music Information Retrieval Conf.
(ISMIR) (cit. on pp. 58, 184).

193

https://hal.science/hal-01057017
https://hal.science/hal-01057017

Bibliography

Goyal, N. (2008). “Bass Guitar in Rock Music: Current State, Potential and Possibilities”.
Post-Graduate Dissertation. Mudra Institute of Communications, Ahmedabad (cit. on
pp. 167, 168).

Grachten, M. et al. (2020). “BassNet: A Variational Gated Autoencoder for Conditional
Generation of Bass Guitar Tracks with Learned Interactive Control”. In: Applied Sci-
ences 10.18 (cit. on pp. 6, 168).

Green, A. (2017). Jazz Guitar Comping: Raising Your Chord Awareness. Mel Bay Publications
(cit. on p. 143).

Green, L. (2002). How Popular Musicians Learn: A Way Ahead for Music Education. Ashgate
Publishing, Ltd. (cit. on pp. 1, 14, 18, 20, 58, 142, 185, 222).

Griffiths, J. (2021). “Turning the Tables: Reassessing Tablature”. In:MSAAnnual Conf. (cit.
on pp. 11, 12, 14, 19).

Grimes, D. R. (2014). “String Theory - The Physics of String-Bending and Other Electric
Guitar Techniques”. In: PLoS ONE 9.7 (cit. on p. 108).

Guilluy, Q. et al. (2025). “Vers Une Taxonomie et Une Analyse Des Gestes Guitaristiques
Dans Le Brutal Death Metal”. In: Actes Des Journées d’Informatique Musicale (JIM) (cit.
on pp. 7, 8).

Guitar Pro8 User Guide (2025). url: https://static.guitar-pro.com/gp8/manual/Guitar-Pro-8-

user-guide.pdf (visited on 2025-02) (cit. on pp. 20, 148).
Guo, C. et al. (2017). “On Calibration of Modern Neural Networks”. In: Proc. of the 34th

Int. Conf. on Machine Learning (ICML) (cit. on p. 120).
Hadjeres, G. et al. (2021). The Piano Inpainting Application. Pre-published (cit. on pp. 58,

184).
Hafsa, M. et al. (2022). “A Multi-Objective e-Learning Recommender System at Man-

darine Academy.” In: Proceedings of the 2nd Workshop on Multi-Objective Recommender
Systems Co-Located with 16th ACM Conference on Recommender Systems (RecSys 2022).
url: https://hal.science/hal-03956402 (cit. on p. 64).

Hamel, P. et al. (2009). “Automatic Identification of Instrument Classes in Polyphonic and
Poly-Instrument Audio”. In: Proc. of the 10th Int. Society for Music Information Retrieval
Conf. (ISMIR) (cit. on p. 46).

Hart, P. E. et al. (1968). “A Formal Basis for the Heuristic Determination ofMinimumCost
Paths”. In: IEEE Transactions on Systems Science and Cybernetics 4.2 (cit. on p. 83).

Hassein-Bey, Z. et al. (2025). “What Song Now? Personalized Rhythm Guitar Learning in
Western Popular Music”. In: Proc. of the 26th Int. Society for Music Information Retrieval
Conf. (ISMIR) (cit. on pp. 8, 69, 86).

Havre, S. J. et al. (2019). “Playing to Learn or Learning to Play? Playing Rocksmith to Learn
Electric Guitar and Bass in Nordic Music Teacher Education”. In: British Journal of Mu-
sic Education 36.1 (cit. on p. 65).

Herbst, J.-P. et al. (2024). Rock Guitar Virtuosos: Advances in Electric Guitar Playing, Technol-
ogy, and Culture. 1st ed. Cambridge University Press (cit. on p. 221).

194

https://static.guitar-pro.com/gp8/manual/Guitar-Pro-8-user-guide.pdf
https://static.guitar-pro.com/gp8/manual/Guitar-Pro-8-user-guide.pdf
https://hal.science/hal-03956402

Bibliography

Herbst, J.-P. et al. (2025). “The Benefits of Collaborative Popular Music Songwriting: A
Spectrum of Artist-Songwriter Involvement”. In: Popular Music and Society 48.1 (cit. on
p. 222).

Herremans, D. et al. (2017). “A Functional Taxonomy of Music Generation Systems”. In:
ACM Computing Surveys 50.5 (cit. on p. 58).

Hess, J. (2020). “Finding the “Both/and”: Balancing Informal and Formal Music Learn-
ing”. In: Int. Journal of Music Education 38.3 (cit. on p. 222).

Hiller, L. et al. (1979). Experimental Music; Composition with an Electronic Computer. Green-
wood Publishing Group Inc. (cit. on p. 27).

Hochreiter, S. et al. (1997). “Long Short-TermMemory”. In:Neural Computation 9.8 (cit. on
p. 39).

Holzapfel, A. et al. (2018). “Ethical Dimensions of Music Information Retrieval Technol-
ogy”. In: Transactions of the Int. Society forMusic Information Retrieval 1.1 (cit. on pp. 219,
220).

Holzapfel, A. et al. (2024). “GreenMIR? InvestigatingComputationalCost of RecentMusic-
Ai Research in Ismir”. In:Proc. of the 25th Int. Society forMusic Information Retrieval Conf.
(ISMIR) (cit. on pp. 213, 214).

Hori, G. (2021). “Three-Level Model for Fingering Decision of String Instruments”. In:
Proc. of the 15th Int. Symposium on Computer Music Multidisciplinary Research (CMMR)
(cit. on pp. 123, 138).

Hori, G. et al. (2013). “Input-Output HMM Applied to Automatic Arrangement for Gui-
tars”. In: Journal of Information Processing 21.2 (cit. on p. 92).

Hove, M. J. et al. (2014). “Superior Time Perception for Lower Musical Pitch Explains
Why Bass-Ranged Instruments Lay down Musical Rhythms”. In: Proc. of the National
Academy of Sciences 111.28 (cit. on p. 168).

Huang, C.-Z. A. et al. (2019). “Music Transformer: Generating Music with Long-Term
Structure”. In: Proc. of the 7th Int. Conf. on Learning Representations (ICLR) (cit. on p. 58).

Huang, C.-Z. A. et al. (2020). “AI Song Contest: Human-AI Co-Creation in Songwriting”.
In: Proc. of the 21st Int. Society forMusic Information Retrieval Conf. (ISMIR) (cit. on p. 58).

Huang, Y.-S. et al. (2020). “Pop Music Transformer: Beat-based Modeling and Generation
of Expressive Pop Piano Compositions”. In:MM ’20: Proc. of the 28th ACM Int. Conf. on
Multimedia (cit. on pp. 2, 59, 60, 170, 172, 173).

Humphrey, E. J. et al. (2014). “JAMS: A JSON Annotated Music Specification for Repro-
ducible MIR Research”. In: Proc. of the 15th Int. Society for Music Information Retrieval
Conf. (ISMIR) (cit. on p. 55).

Ian, S. (2018). ’The Magic of Malcolm Young’. url: https://www.youtube.com/watch?v=w4

IFImDwnHk (visited on 2025-06) (cit. on p. 143).
Ji, S. et al. (2023). “A Survey on Deep Learning for Symbolic Music Generation: Represen-

tations, Algorithms, Evaluations, and Challenges”. In: ACM Computing Surveys 56.1
(cit. on pp. 58, 59).

195

https://www.youtube.com/watch?v=w4IFImDwnHk
https://www.youtube.com/watch?v=w4IFImDwnHk

Bibliography

Jordanous, A. (2012). “A Standardised Procedure for Evaluating Creative Systems: Com-
putational Creativity Evaluation Based on What It Is to Be Creative”. In: Cognitive
Computation 4.3 (3) (cit. on pp. 30, 174).

— (2016). “Four PPPPerspectives on Computational Creativity in Theory and in Prac-
tice”. In: Connection Science 28.2 (cit. on p. 61).

Josel, S. et al., eds. (2014). The Techniques of Guitar Playing. Bärenreiter (cit. on p. 170).
Kaliakatsos-Papakostas, N. et al. (2022). “AMachine Learning Approach forMIDI to Gui-

tar Tablature Conversion”. In: Proc. of the 19th Sound and Music Computing Conf. (SMC)
(cit. on p. 61).

Keating, M. et al. (2024). “Jazz Guitar Voice-Leading Chord Fingerings With Long Short-
Term Memory”. In: Proc. of the AI Music Creativity Conf. (AIMC) (cit. on pp. 56, 65).

Kehling, C. et al. (2014). “Automatic Tablature Transcription of Electric Guitar Recordings
by Estimation of Score- and Instrument-related Parameters”. In: Proc. of the 17th Int.
Conf. on Digital Audio Effects (DAFx-14) (cit. on p. 46).

Kelly, J. (2007). “PopMusic,Multimedia and Live Performance”. In:Music, Sound andMul-
timedia: From the Live to the Virtual. Jamie Sexton. Edinburgh University Press (cit. on
p. 222).

Kendall, M. G. (1945). “The Treatment of Ties in Ranking Problems”. In: Biometrika 33.3
(cit. on p. 93).

Kim, S. (2025). “Édition, Distribution, Utilisation”. In: Journées d’accélération de l’ICCARE-
LAB : Partition et Numérique (cit. on p. 15).

Kingma, D. P. et al. (2015). “Adam: A Method for Stochastic Optimization”. In: 3rd Int.
Conf. for Learning Representations (ICLR) (cit. on p. 38).

Kolb, T. (2020). String-Bending Masterclass: How to Make Your Guitar Wail and Sing Like
the Pros. Guitar Player. url: https : / /www . guitarplayer . com / lessons / string - bending -

masterclass-how-to-make-your-guitar-wail-and-sing-like-the-pros (visited on 2023-01)
(cit. on p. 108).

Koozin, T. (2011). “Guitar Voicing in Pop-Rock Music: A Performance-Based Analytical
Approach”. In: Music Theory Online 17.3 (cit. on pp. 51, 221).

Krizhevsky, A. et al. (2017). “ImageNet Classification with Deep Convolutional Neural
Networks”. In: Communications of the ACM 60.6 (cit. on p. 26).

Laato, S. et al. (2022). “How to Explain AI Systems to End Users: A Systematic Literature
Review and Research Agenda”. In: Internet Research 32.7 (cit. on p. 99).

Laliberté, M. (2010). “Notations pour la guitare électrique”. In: Appareil 5 (cit. on pp. 14,
20).

Larson, T. (2018). Sarah Longfield, Queen of the 8-String. YouTube - Music is Win. url: https:
//youtu.be/LkIFETF17qc?si=znZ6GiRi_Pn6Isnp&t=187 (cit. on p. 69).

Le, D.-V.-T. et al. (2024). “Natural Language ProcessingMethods for SymbolicMusic Gen-
eration and Information Retrieval: A Survey”. In: ACMComputing Surveys 57.7 (cit. on
pp. 1, 2, 39, 46, 58, 59, 170).

196

https://www.guitarplayer.com/lessons/string-bending-masterclass-how-to-make-your-guitar-wail-and-sing-like-the-pros
https://www.guitarplayer.com/lessons/string-bending-masterclass-how-to-make-your-guitar-wail-and-sing-like-the-pros
https://youtu.be/LkIFETF17qc?si=znZ6GiRi_Pn6Isnp&t=187
https://youtu.be/LkIFETF17qc?si=znZ6GiRi_Pn6Isnp&t=187

Bibliography

Le Cun, Y. (2019). Quand La Machine Apprend : La Révolution Des Neurones Artificiels et de
l’apprentissage Profond. Odile Jacob (cit. on p. 34).

Leech-Wilkinson, D. (2012). “Compositions, Scores, Performances, Meanings”. In: Music
Theory Online 18.1 (cit. on p. 58).

Longuet-Higgins, H. C. et al. (1984). “The Rhythmic Interpretation of Monophonic Mu-
sic”. In: Music Perception 1.4 (cit. on p. 91).

Loth, J. et al. (2023). “ProgGP: From GuitarPro Tablature Neural Generation To Progres-
sive Metal Production”. In: Proc. of the 16th Int. Symposium on Computer Music Multi-
disciplinary Research (CMMR). Zenodo (cit. on pp. 50, 60, 62).

Lourenço, J. M. (2021). The NOVAthesis LATEX Template User’s Manual. NOVA University
Lisbon. url: https://github.com/joaomlourenco/novathesis/raw/main/template.pdf (cit. on
p. iii).

Lu, L. et al. (2004). “Audio Textures: Theory and Applications”. In: IEEE Transactions on
Speech and Audio Processing 12.2 (cit. on p. 140).

Lundberg, S. M. et al. (2017). “AUnifiedApproach to InterpretingModel Predictions”. In:
Advances in Neural Information Processing Systems. Ed. by I. Guyon et al. (cit. on pp. 32,
100).

Ma, H. et al. (2023). “Classification of Guitar Tab and Numbered Musical Notation Using
ResNet50 Network”. In: Proc. of the 3rd Int. Conf. on Artificial Intelligence, Automation,
and High-Performance Computing (AIAHPC) (cit. on pp. 52, 54).

Maccarini, F. (2024). “ModelingOrchestration forComputerAssistedAnalysis andHuman-
AI Co-Creativity”. PhD thesis. Université de Lille (cit. on p. 58).

Macrae, R. et al. (2011). “Guitar Tab Mining, Analysis and Ranking”. In: Proc. of the 12th
Int. Society for Music Information Retrieval Conf. (ISMIR) (cit. on p. 64).

Makris, D. et al. (2022). “Conditional Drums Generation Using Compound Word Repre-
sentations”. In: Proc. of the Int. Conf. on Computational Intelligence in Music, Sound, Art
and Design (EvoMUSART). Ed. by T. Martins et al. Springer International Publishing
(cit. on pp. 172, 174).

Margoudi, M. et al. (2016). “Game-Based Learning ofMusical Instruments: A Review and
Recommendations”. In: 10th European Conf. on Games Based Learning (ECGBL) (cit. on
p. 82).

Margulis, E. H. (2014). On Repeat : How Music Plays the Mind. New York, NY : Oxford
University Press (cit. on pp. 91, 144).

McCulloch, W. S. et al. (1943). “A Logical Calculus of the Ideas Immanent in Nervous
Activity”. In: The bulletin of mathematical biophysics 5.4 (4) (cit. on pp. 34, 35).

McKinna, D. R. (2014). “The Touring Musician: Repetition and Authenticity in Perfor-
mance”. In: IASPM Journal 4.1 (1) (cit. on pp. 19, 222).

McQueen, H. et al. (2018). “Teachers’ and Students’ Music Preferences for Secondary
School Music Lessons: Reasons and Implications”. In: Music Education Research 20.1
(cit. on p. 62).

197

https://github.com/joaomlourenco/novathesis/raw/main/template.pdf

Bibliography

McVicar,M. et al. (2014a). “AutoLeadGuitar: AutomaticGeneration ofGuitar Solo Phrases
in the Tablature Space”. In: 12th Int. Conf. on Signal Processing (ICSP). IEEE (cit. on
pp. 53, 60).

— (2014b). “AutoRhythmGuitar: Computer-aidedComposition for RhythmGuitar in the
Tab Space”. In: Proc. of the 40th Int. Computer Music Conf. Joint with the 11th Sound and
Music Computing Conf. (ICMC|SMC) (cit. on pp. 53, 60).

— (2015). “AutoGuitarTab: Computer-Aided Composition of Rhythm and Lead Guitar
Parts in the Tablature Space”. In: IEEE/ACMTransactions on Audio, Speech, and Language
Processing. Vol. 23 (cit. on pp. 5, 53, 60, 135).

Merchi, G. (1700–1799). Le Guide Des Écoliers de Guitarre (cit. on p. 19).
Mesbur, E. E. (2006). “Choosing to Play: Adolescent Girls and Informal Music Learning”.

Master of Arts. University of Toronto (cit. on p. 222).
Middleton, R. et al. (2001). “Popular Music”. In: Oxford Music Online. Oxford University

Press (cit. on p. 17).
Minsky, M. et al. (1969). Perceptrons: An Introduction to Computational Geometry. MIT Press

(cit. on p. 35).
Mistler, E. (2017). “Generating Guitar Tablatures with Neural Networks”. Master of Sci-

ence Thesis in Data Science. University of Edinburgh (cit. on pp. 54, 61).
Mitchell, T.M. (1997).Machine Learning. Nachdr.McGraw-Hill Series inComputer Science.

McGraw-Hill (cit. on pp. 25, 28).
Morreale, F. et al. (2023). “Data Collection in Music Generation Training Sets: A Critical

Analysis”. In: Proc. of the 24th Int. Society for Music Information Retrieval Conf. (ISMIR)
(cit. on p. 219).

Müllensiefen, D. et al. (2014). “The Musicality of Non-Musicians: An Index for Assessing
Musical Sophistication in the General Population”. In: PLoS ONE 9.2 (cit. on p. 158).

Müllerschön, M. et al. (2025). “Playability Prediction in Digital Guitar Learning Using In-
terpretable Student and SongRepresentations”. In:Proc. of the 26th Int. Society forMusic
Information Retrieval Conf. (ISMIR). url: https://ismir2025program.ismir.net/poster_238

.html (visited on 2025-11) (cit. on p. 64).
Murgul, S. et al. (2025). “Joint Transcription of Acoustic Guitar Strumming Directions and

Chords”. In:Proc. of the 26th Int. Society forMusic Information Retrieval Conf. (ISMIR) (cit.
on p. 163).

Narici, I. (2025). “Édition, Distribution, Utilisation”. In: Journées d’accélération de l’ICCARE-
LAB : Partition et Numérique (cit. on p. 15).

Navarret, B. (2013). “Caractériser la guitare électrique : définitions, organologie et analyse
de données verbales”. Thèse de Doctorat. Université Paris 8 (cit. on pp. 14, 15, 19, 20).

Nemeroff, B. (2024). Lead vs. RhythmGuitar: What’s the Difference? Fender. url: https://www.

fender.com/articles/instruments/lead-vs-rhythm-guitar (visited on 2025-01) (cit. on p. 22).
Nielsen, S. G. et al. (2023). “Selecting Repertoire for Music Teaching: Findings from Nor-

wegian Schools of Music and Arts”. In: Research Studies in Music Education 45.1 (cit. on
p. 62).

198

https://ismir2025program.ismir.net/poster_238.html
https://ismir2025program.ismir.net/poster_238.html
https://www.fender.com/articles/instruments/lead-vs-rhythm-guitar
https://www.fender.com/articles/instruments/lead-vs-rhythm-guitar

Bibliography

Nierhaus,G. (2009).Algorithmic Composition: Paradigms of AutomatedMusicGeneration. Springer
Science & Business Media (cit. on p. 57).

Nika, J. et al. (2017). “DYCI2Agents:Merging the ”free”, ”reactive”, and ”scenario-Based”
Music Generation Paradigms”. In: Proc. of the Int. Computer Music Conf. (ICMC) (cit. on
p. 58).

Nistal, J. et al. (2024). “Diff-a-Riff: Musical Accompaniment Co-Creation Via Latent Dif-
fusion Models”. In: Proc. of the 25th Int. Society for Music Information Retrieval Conf.
(ISMIR) (cit. on pp. 6, 168).

Norris, C. J. (2021). “The Negativity Bias, Revisited: Evidence from Neuroscience Mea-
sures and an Individual Differences Approach”. In: Social Neuroscience 16.1 (cit. on
p. 165).

Norton, J. C. (2008). “Motion Capture to Build a Foundation for a Computer-Controlled
Instrument by Study of Classical Guitar Performance”. PhD thesis. Stanford Univer-
sity (cit. on p. 20).

Novack, Z. et al. (2025). “Presto! Distilling Steps and Layers for Accelerating Music Gen-
eration”. In: Proc. of the 13th Int. Conf. on Learning Representations (ICLR) (cit. on p. 216).

OpenAI (2025). ChatGPT — Release Notes. url: https://help.openai.com/en/articles/6825453-

chatgpt-release-notes (visited on 2025-05) (cit. on p. 26).
Owens, J. T. (2017). “Power Chords, Blast Beats, and Accordions: Understanding Informal

Music Learning in the Lives of Community CollegeMusicians”. PhD thesis. Kent State
University (cit. on p. 222).

Palmer, C. (2006). “TheNature ofMemory forMusic Performance Skills”. In:Music, Motor
Control and the Brain. Oxford University Press (cit. on p. 90).

Pasini, M. et al. (2024). “Bass Accompaniment Generation via Latent Diffusion”. In: Proc.
of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (cit. on p. 168).

Paul, D. et al. (2020). “A Survey of Music Recommendation Systems with a Proposed
Music Recommendation System”. In: Emerging Technology in Modelling and Graphics.
Springer (cit. on p. 64).

Pease, A. et al. (2011). “On Impact and Evaluation in Computational Creativity: A Discus-
sion of the Turing Test and an Alternative Proposal”. In: Proc. of the AISB Symposium
on Computing and Philosophy (cit. on p. 27).

Pedregosa, F. et al. (2011). “Scikit-Learn: Machine Learning in Python”. In: Journal of Ma-
chine Learning Research 12 (cit. on p. 32).

Pedroza, H. et al. (2024). “Leveraging Real Electric Guitar Tones and Effects to Improve
Robustness in Guitar Tablature Transcription Modeling”. In: Proc. of the 27th Int. Conf.
on Digital Audio Effects (DAFx24) (cit. on p. 50).

Peeters, G. (2004). A Large Set of Audio Features for Sound Description (Similarity and Classi-
fication) in the CUIDADO Project. Technical Report 1 (cit. on p. 31).

Peterson, J. (2009). “Computer Notation-based Music Composition and the Delayed In-
troduction of Musical Expression Markings”. In: Journal of Education, Informatics and
Cybernetics 1 (cit. on p. 22).

199

https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://help.openai.com/en/articles/6825453-chatgpt-release-notes

Bibliography

Petrucci, J. (1995). Rock Discipline. Youtube - Guitar Channel. url: https://youtu.be/3Ababg5

Y8kA?si=5LTOkCJz2UU_WtYm&t=2395 (visited on 2025-05) (cit. on p. 85).
Pinheiro, J. et al. (2000). “Linear Mixed-Effects Models: Basic Concepts and Examples”.

In: Mixed-Effects Models in S and S-PLUS. Springer, New York, NY (cit. on p. 161).
Polin, A. (2022). Guitar Chords For Dummies. John Wiley & Sons (cit. on p. 128).
Radford, A. et al. (2018). Improving Language Understanding by Generative Pre-Training. Pre-

published (cit. on p. 42).
Radford,A. et al. (2019). LanguageModels AreUnsupervisedMultitask Learners. Pre-published

(cit. on p. 147).
Raffel, C. et al. (2014). “‘mir_eval‘: A Transparent Implementation of Common MIR Met-

rics”. In: Proc. of the 15th Int.Society for Music Information Retrieval Conf. (ISMIR) (cit. on
p. 30).

Ramoneda, P. et al. (2022). “Score Difficulty Analysis for Piano Performance Meducation
Based on Fingering”. In: Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Pro-
cessing (ICASSP). Institute of Electrical and Electronics Engineers (IEEE) (cit. on p. 63).

Ramoneda, P. et al. (2023). “Predicting Performance Difficulty from Piano Sheet Music
Images”. In: Proc. of the 24th Int. Society for Music Information Retrieval Conf. (ISMIR
2023) (cit. on pp. 63, 86).

Ramoneda, P. et al. (2024a). “Combining Piano Performance Dimensions for Score Diffi-
culty Classification”. In: Expert Systems with Applications 238 (cit. on pp. 63, 86, 98).

Ramoneda, P. et al. (2024b). “Towards Explainable and Interpretable Musical Difficulty
Estimation: A Parameter-efficient Approach”. In: Proc. of the 25th Int. Society for Music
Information Retrieval Conf. (ISMIR) (cit. on pp. 7, 85, 90, 95, 97, 98, 100).

Randel, D. M. (2003). The Harvard Dictionary of Music. Harvard University Press (cit. on
p. 58).

Régnier, D. et al. (2021). “Identification of Rhythm Guitar Sections in Symbolic Tabla-
tures”. In: Proc. of the 22nd Int. Society for Music Information Retrieval Conf. (ISMIR) (cit.
on pp. 2, 23, 31, 48, 106, 114, 151, 171).

Rhodes, M. (1961). “An Analysis of Creativity”. In: The Phi Delta Kappan 42.7 (cit. on
p. 221).

RIAA (2024). Record Companies Bring Landmark Cases for Responsible AI Against Suno and
Udio in Boston and New York Federal Courts, Respectively. RIAA. url: https://www.riaa.

com/record-companies-bring-landmark-cases-for-responsible-ai-againstsuno-and-udio-in-

boston-and-new-york-federal-courts-respectively/ (visited on 2025-05) (cit. on p. 217).
Ribeiro, M. T. et al. (2016). “”Why Should I Trust You?”: Explaining the Predictions of

Any Classifier”. In: KDD ’16: Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (cit. on p. 32).

Riley, X. et al. (2024a). “GAPS: A Large and Diverse Classical Guitar Dataset and Bench-
mark Transcription Model”. In: Proc. of the 25th Int. Society for Music Information Re-
trieval Conf. (Cit. on pp. 46, 55).

200

https://youtu.be/3Ababg5Y8kA?si=5LTOkCJz2UU_WtYm&t=2395
https://youtu.be/3Ababg5Y8kA?si=5LTOkCJz2UU_WtYm&t=2395
https://www.riaa.com/record-companies-bring-landmark-cases-for-responsible-ai-againstsuno-and-udio-in-boston-and-new-york-federal-courts-respectively/
https://www.riaa.com/record-companies-bring-landmark-cases-for-responsible-ai-againstsuno-and-udio-in-boston-and-new-york-federal-courts-respectively/
https://www.riaa.com/record-companies-bring-landmark-cases-for-responsible-ai-againstsuno-and-udio-in-boston-and-new-york-federal-courts-respectively/

Bibliography

Riley, X. et al. (2024b). “High Resolution Guitar Transcription Via Domain Adaptation”.
In: Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (cit. on
p. 54).

Ritchie, G. (2019). “The Evaluation of Creative Systems”. In: Computational Creativity: The
Philosophy and Engineering of Autonomously Creative Systems. Ed. by T. Veale et al. Com-
putational Synthesis and Creative Systems (CSACS). Springer International Publish-
ing (cit. on p. 174).

Roberts, A. et al. (2019). “A Hierarchical Latent Vector Model for Learning Long-Term
Structure in Music”. In: Proc. of the 35th Int. Conf. on Machine Learning PMLR (cit. on
p. 57).

Rodriguez, R. et al. (2020). “Learning beyond the Game: A Multimodal Analysis of Rock-
smith Users’ Interactions”. In: Acta Ludologica 3.2 (cit. on p. 65).

Rosenblatt, F. (1958). “The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain.” In: Psychological Review 65.6 (cit. on pp. 35, 36).

Row, E. et al. (2023). “JAZZVAR: A Dataset of Variations Found within Solo Piano Perfor-
mances of Jazz Standards for Music Overpainting”. In: Proc. of the 16th Int. Symposium
on Computer Music Multidisciplinary Research (CMMR) (cit. on pp. 59, 184).

RSL Awards (2023). Electric Guitar Syllabus (cit. on pp. 90, 92).
Ruismäki, H. et al. (2012). “The Internet as a Learning Environment in Guitar Playing:

Rane’s Search for Information and Expertise”. In: Procedia - Social and Behavioral Sci-
ences 45 (cit. on p. 222).

Rumelhart, D. E. et al. (1986). “Learning Representations by Back-Propagating Errors”.
In: Nature 323 (cit. on p. 38).

Sakai, S. et al. (2024). “Tablature Generation from Lead Sheets for Finger-Style Solo Gui-
tar”. In: Proc. of the 21st Sound and Music Computing Conf. (SMC) (cit. on p. 61).

Samuel, A. L. (1959). “Some Studies in Machine Learning Using the Game of Checkers”.
In: IBM Journal of Research and Development (cit. on p. 27).

Sanh, V. et al. (2020). “DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper
and Lighter”. In: EMC^2: 5th Edition Co-located with NeurIPS’19. arXiv (cit. on p. 216).

Sarmento, P. (2024). “Guitar TablatureGenerationwithDeepLearning”. PhD thesis. Queen
Mary University of London (cit. on pp. 48, 219).

Sarmento, P. et al. (2021). “DadaGP: ADataset of TokenizedGuitarPro Songs for Sequence
Models”. In: Proc. of the 22nd Int. Society for Music Information Retrieval Conf. (ISMIR)
(cit. on pp. 5, 45, 48–51, 55, 60).

Sarmento, P. et al. (2023a). “GTR-CTRL: Instrument and Genre Conditioning for Guitar-
Focused Music Generation with Transformers”. In: Proc. of the Int. Conf. on Computa-
tional Intelligence in Music, Sound, Art and Design (EvoMUSART) (cit. on pp. 6, 50, 60,
168).

Sarmento, P. et al. (2023b). “ShredGP: Guitarist Style-Conditioned Tablature Generation
with Transformers”. In: Proc. of the 16th Int. Symposium on Computer Music Multidisci-
plinary Research (CMMR). Zenodo (cit. on pp. 50, 51, 60, 123, 184).

201

Bibliography

Satvaty, A. et al. (2025). Undesirable Memorization in Large Language Models: A Survey. Pre-
published (cit. on p. 219).

Savage, P. E. et al. (2018). “Quantitative Evaluation of Music Copyright Infringement”. In:
Proc. of the 8th Int. Workshop on Folk Music Analysis (cit. on p. 220).

Sawayama, K. et al. (2006). “A System Yielding the Optimal Chord-Form Sequence on the
Guitar”. In: Proc. of the Int. Conf. on Music Perception and Cognition (ICMPC). Citeseer
(cit. on p. 129).

Sayegh, S. I. (1989). “Fingering for String Instruments with the OptimumPath Paradigm”.
In: Computer Music Journal 13.3 (cit. on p. 46).

Sayood, K. (2018). “Information Theory and Cognition: A Review”. In: Entropy 20.9 (9)
(cit. on p. 90).

Schubert, E. (2013). “Emotion Felt by the Listener and Expressed by the Music: Literature
Review and Theoretical Perspectives”. In: Frontiers in Psychology 4 (cit. on p. 62).

Schwartz, R. et al. (2020). “Green AI”. In: Commun. ACM 63.12 (cit. on pp. 213–215).
Sébastien, V. et al. (2012). “Score Analyzer: Automatically Determining Scores Difficulty

Level for Instrumental e-Learning”. In: Proc. of the 13th Int. Society forMusic Information
Retrieval Conf. (ISMIR) (cit. on p. 62).

Shiga, J. (2016). “Copying Machines: Unconscious Musical Plagiarism and the Mediati-
sation of Listening and Memory”. In: Transposition. Musique et Sciences Sociales 6 (6)
(cit. on p. 219).

Shmulevich, I. et al. (2000). “Measures of Temporal Pattern Complexity”. In: Journal of New
Music Research 29.1 (cit. on p. 91).

Sioros, G. (2014). “Syncopation as Transformation”. PhD thesis. Universidade do Porto
(cit. on p. 92).

Skreinig, L. R. et al. (2022). “AR Hero: Generating Interactive Augmented Reality Guitar
Tutorials”. In: Proc. of the IEEE Conf. on Virtual Reality and 3D User Interfaces Abstracts
and Workshops (VRW) (cit. on p. 65).

Skreinig, L. R. et al. (2023). “guitARhero: InteractiveAugmentedRealityGuitar Tutorials”.
In: IEEE Transactions on Visualization and Computer Graphics 29.11 (cit. on p. 65).

Snapes, L. (2024). “Miley Cyrus Sued over Allegedly Copying Bruno Mars Song on Flow-
ers”. In: The Guardian. Music. url: https : / /www. theguardian . com/music / 2024 / sep /1

7 /miley-cyrus -sued-over -allegedly -copying-bruno-mars -song-on- flowers (visited on
2025-05) (cit. on p. 219).

Somdahl-Sands, K. et al. (2015). “Media, Performance, and Pastpresents: Authenticity in
the Digital Age”. In: GeoJournal 80.6 (6) (cit. on p. 19).

Stein, M. et al. (2010). “Automatic Detection of Audio Effects in Guitar and Bass Record-
ings”. In: Journal of the Audio Engineering Society 8013 (cit. on p. 46).

Stokes, S. (2019). Digital Copyright: Law and Practice. 1st ed. Bloomsbury Publishing Plc
(cit. on p. 218).

202

https://www.theguardian.com/music/2024/sep/17/miley-cyrus-sued-over-allegedly-copying-bruno-mars-song-on-flowers
https://www.theguardian.com/music/2024/sep/17/miley-cyrus-sued-over-allegedly-copying-bruno-mars-song-on-flowers

Bibliography

Sturm, B. L. (2012). “Two Systems for Automatic Music Genre Recognition: What Are
They Really Recognizing?” In: Proc. of the Second Int. ACMWorkshop on Music Informa-
tion Retrieval with User-Centered and Multimodal Strategies. MIRUM ’12. Association for
Computing Machinery (cit. on p. 29).

— (2017). “The “Horse” inside: Seeking Causes behind the Behaviors of Music Content
Analysis Systems”. In: Computers in Entertainment (CIE) 14.2 (cit. on p. 32).

Temperley, D. (2018). TheMusical Language of Rock. Oxford University Press (cit. on p. 113).
Thorpe, V. (2007). “WeMade This Song. The Group SongWriting Processes of Three Ado-

lescent Rock Bands”. Master of Music. New Zealand School of Music (cit. on p. 222).
Tobias, E. S. (2013). “Composing, Songwriting, and Producing: Informing Popular Music

Pedagogy”. In: Research Studies in Music Education 35.2 (cit. on pp. 20, 22).
Tostig, A. (2025). The Amateur Guitar Player’s Chord-Strummin’ Songbook. Songbook. url:

https://songbook19.my-free.website/ (visited on 2025-06) (cit. on p. 128).
Trinity College London (2017). Guitar Syllabus: Rock & Pop (cit. on pp. 90, 92).
Tuck, M. (2025). BFMV x Trivium – Guitar Talk & Playthroughs. Youtube - Bullet For My

Valentine. url: https://youtu.be/TdWvrBp-5SQ?si=jLfaN3y8pw66dpz4&t=281 (visited on
2025-06) (cit. on p. 127).

Tuohy, D. R. et al. (2005). “A Genetic Algorithm for the Automatic Generation of Playable
Guitar Tablature”. In: Proc. of the Int. Computer Music Conf. (ICMC) (cit. on p. 61).

— (2006). “GA-based Music Arranging for Guitar”. In: Proc. of the IEEE Int. Conf. on Evo-
lutionary Computation (cit. on pp. 53, 61).

Turing, A. M. (1950). “ComputingMachinery and Intelligence”. In:Mind 49 (cit. on p. 27).
Ultimate Guitar Tablature Guide (2025). url: https://www.ultimate-guitar.com/contribution/

help/rubric#ii5 (visited on 2025-02) (cit. on p. 20).
Vaswani, A. et al. (2017). “Attention Is All You Need”. In: Proc. of the 31st Conf. on Neural

Information Processing Systems (NIPS). url: http://arxiv.org/abs/1706.03762 (visited on
2022-09) (cit. on pp. 32, 41).

Vazirani, V. V. (2003). Approximation Algorithms. Springer (cit. on p. 83).
Vélez Vásquez, M. A. et al. (2023). “Quantifying the Ease of Playing Song Chords on the

Guitar”. In: Proc. of the 24th Int. Society for Music Information Retrieval Conf. (ISMIR) (cit.
on pp. 3, 4, 54, 63, 70, 71, 86, 95, 129).

Wang, B. et al. (2021). “Soloist: GeneratingMixed-Initiative Tutorials from Existing Guitar
Instructional Videos Through Audio Processing”. In: Proc. of the CHI Conf. on Human
Factors in Computing Systems (CHI ’21) (cit. on pp. 4, 64).

Wang, X. et al. (2024). “Deep Reinforcement Learning: A Survey”. In: IEEE Transactions on
Neural Networks and Learning Systems 35.4 (cit. on p. 82).

Wang, Z. et al. (2021). “MuseBERT: Pre-Training of Music Representation for Music Un-
derstanding and Controllable Generation”. In: Proc. of the 22nd Int. Society for Music
Information Retrieval Conf. (ISMIR) (cit. on p. 2).

203

https://songbook19.my-free.website/
https://youtu.be/TdWvrBp-5SQ?si=jLfaN3y8pw66dpz4&t=281
https://www.ultimate-guitar.com/contribution/help/rubric#ii5
https://www.ultimate-guitar.com/contribution/help/rubric#ii5
http://arxiv.org/abs/1706.03762

Bibliography

Wiggins, A. et al. (2019). “Guitar Tablature Estimation with a Convolutional Neural Net-
work”. In: Proc. of the 20th Int. Society for Music Information Retrieval Conf. (ISMIR) (cit.
on p. 136).

Windsor, M. (2021). “Using Machines to Define Musical Creativity”. MUSSS3140: Disser-
tation. University of Leeds (cit. on p. 57).

WIPO (1979). Berne Convention for the Protection of Literary and Artistic Works, Article 6bis.
World Intellectual Property Organization. url: https://www.wipo.int/treaties/en/ip/

berne/ (cit. on p. 218).
Wortman, K. A. et al. (2021). “CombinoChord: A Guitar Chord Generator App”. In: IEEE

11th Annual Computing and Communication Workshop and Conference (CCWC) (cit. on
pp. 5, 65, 93, 129, 137, 140, 141).

Wu, C.-J. et al. (2022). “Sustainable AI: Environmental Implications, Challenges and Op-
portunities”. In: Proc. of Machine Learning and Systems (cit. on pp. 213–215).

Wu, S.-L. et al. (2023). “MuseMorphose: Full-Song and Fine-Grained Piano Music Style
TransferWith One Transformer VAE”. In: IEEE/ACMTransactions on Audio, Speech, and
Language Processing 31 (cit. on pp. 58, 145, 147).

Xi, Q. et al. (2018). “Guitarset: A Dataset for Guitar Transcription”. In: Proc. of the 19th
International Society for Music Information Retrieval Conf. (ISMIR) (cit. on pp. 46, 55).

Yang, R. et al. (2025). “Music with Numbers: Jianpu Number-Based Notation in Cultural
Heritage and Digital Humanities”. In: Proc. of the Music Encoding Conf. (MEC) (cit. on
p. 52).

Yazawa, K. et al. (2014). “Automatic Transcription of Guitar Tablature fromAudio Signals
in Accordance with Player’s Proficiency”. In: Proc. of the IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP) (cit. on p. 137).

Yim, G. (2011). “Affordant Chord Transitions in Selected Guitar-Driven Popular Music”.
MA thesis. The Ohio State University (cit. on p. 51).

Yin, Z. et al. (2022). “Measuring When a Music Generation Algorithm Copies Too Much:
The Originality Report, Cardinality Score, and Symbolic Fingerprinting by Geometric
Hashing”. In: SN Computer Science 3.5 (5) (cit. on p. 148).

Yuan, Y. et al. (2023). “Perceptual and Automated Estimates of Infringement in 40 Mu-
sic Copyright Cases”. In: Transactions of the International Society for Music Information
Retrieval 6.1 (cit. on p. 219).

Yue, Y. et al. (2025). “Artificial Intelligence in Music Education: Exploring Applications,
Benefits, and Challenges”. In: Proc. of the 14th Int. Conf. on Educational and Information
Technology (ICEIT) (cit. on p. 64).

Zang, Y. et al. (2024). “SynthTab: Leveraging Synthesized Data for Guitar Tablature Tran-
scription”. In:Proc. of the IEEE Int. Conf. onAcoustics, Speech and Signal Processing (ICASSP)
(cit. on p. 50).

Zappa, F. (2017). The Frank Zappa Guitar Book. Hal Leonard Corporation (cit. on p. 111).

204

https://www.wipo.int/treaties/en/ip/berne/
https://www.wipo.int/treaties/en/ip/berne/

Bibliography

Zeng, Z. et al. (2024). “A Survey of Music Recommendation Systems”. In: Proc. of the 5th
Int. Conf. on Computer Information and Big Data Applications (CIBDA ’24) (cit. on pp. 3,
64, 82).

Zhang, X. et al. (2008). “Chord Recognition Using Instrument Voicing Constraints”. In:
Proc. of the 9th Int. Society for Music Information Retrieval Conf. (ISMIR) (cit. on p. 46).

Zhou, Y. et al. (2022). AnimeTAB: A New Guitar Tablature Dataset of Anime and Game Music.
Pre-published (cit. on p. 55).

Zhu, J.-Y. et al. (2017). “Unpaired Image-to-Image TranslationUsing Cycle-Consistent Ad-
versarial Networks”. In: Proc. of the Int. Conf. on Computer Vision (ICCV) (cit. on p. 61).

Zhuang, X. (2023). “Symbolic Guitar Music Style Transfer with Playable Guitar Tabla-
tures”.Master of Science Thesis in Embedded Systems. Delft University of Technology
(cit. on p. 61).

Ziv, J. et al. (1978). “Compression of Individual Sequences via Variable-Rate Coding”. In:
IEEE Transactions on Information Theory 24.5 (cit. on p. 91).

The NOVAthesis template (v7.3.1) (Lourenço 2021). (12cc90221730b8ba41bb3b1f8b517acd)Bibliography

Lourenço, J. M. (2021). The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. url: https://github.com/joaomlourenco/novathesis/raw/main/template.pdf (cit. on p. 205).

205

https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf

A

Evaluation Samples of the Rhythm Guitar
User Study

Below are shown the 5 samples that participants were asked to rate for the subjective
evaluation of the models presented in chapter 8. Each sample had 3 versions: the ref-
erence, the transformer generation, and the rule-based generation. Please note that the
original study featured videos with sound for each example to help the participants rate
the excerpts.

A.1 Sample 1

Figure A.1: Reference tablature of the first sample.

207

Appendix A. Evaluation Samples of the Rhythm Guitar User Study

Figure A.2: Rule-based generated tablature of the first sample.

Figure A.3: Transformer generated tablature of the first sample.

A.2 Sample 2

Figure A.4: Reference tablature of the second sample.

208

A.3. Sample 3

Figure A.5: Rule-based generated tablature of the second sample.

Figure A.6: Transformer generated tablature of the second sample.

A.3 Sample 3

Figure A.7: Reference tablature of the third sample.

209

Appendix A. Evaluation Samples of the Rhythm Guitar User Study

Figure A.8: Rule-based generated tablature of the third sample.

Figure A.9: Transformer generated tablature of the third sample.

A.4 Sample 4

Figure A.10: Reference tablature of the fourth sample.

210

A.5. Sample 5

Figure A.11: Rule-based generated tablature of the fourth sample.

Figure A.12: Transformer generated tablature of the fourth sample.

A.5 Sample 5

Figure A.13: Reference tablature of the fifth sample.

211

Appendix A. Evaluation Samples of the Rhythm Guitar User Study

Figure A.14: Rule-based generated tablature of the fifth sample.

Figure A.15: Transformer generated tablature of the fifth sample.

212

B

Energy Consumption Considerations

In 2022, researchers from MetaAI published a detailed analysis of the environmental im-
pact of their team developing AI models, through the carbon footprint and energy re-
quirements (C.-J. Wu et al. 2022). In this paper, they thoroughly report on all the steps
required to make an AI model usable to Meta’s applications. Interestingly, they discuss
how the energy consumptions is split between the development steps, from the data pro-
cessing and initial experiments, to the training and later inference. Because their models
are used “trillions of times every day”, the inference has the most impact, but they also
discuss how extremely small performance gains can strongly increase the energy con-
sumption, something also identified in Douwes et al. (2021). While it is commendable
that large companies like Meta transparently share information regarding the energy re-
quired for developing their AI models, Schwartz et al. (2020) argues that the number of
operations required is a better measure of a model’s consumption. Indeed, the energy
consumption and the carbon emissions of an AI model are influenced by many factors
like the hardware used for the computation, the usage ratio of said hardware, or the en-
ergy infrastructure (depending on the ratio of carbon-efficient energy sources). Likewise,
the duration of training or the amount of parameters are not efficient measures of perfor-
mance. However, the number of Floating-Point Operations (FPOs) – i.e. the amount of
add or multiply operations – is agnostic to the hardware used for training/inference and
accurately reflects the computational load of a model (Schwartz et al. 2020). Nonethe-
less, reporting the energy required to train AI models allows to compare it with known
frames of reference and to remind that DL methods have an energy cost: data centres
around the world consume more electricity than a country like France.1 For this reason,
in this section, we discuss the energy consumption of our work, the computational cost
of the models developed, and reflect upon possible improvements,2 to support the need
of increased transparency in the MIR community (Holzapfel et al. 2024).

1https://www.imf.org/en/Blogs/Articles/2025/05/13/ai-needs-more-abundant-power-supplies-to-keep-driving-
economic-growth, accessed in May 2025.

2Digital technologies have other impact, like water consumption required for building hardware and
mining practices that can be morally questionable. They are not discussed here but we point the inter-
ested reader to https://www.ethicalconsumer.org/technology/conflict-minerals-tech-goods-home-appliances (ac-
cessed in July 2025), for instance.

213

https://www.imf.org/en/Blogs/Articles/2025/05/13/ai-needs-more-abundant-power-supplies-to-keep-driving-economic-growth
https://www.imf.org/en/Blogs/Articles/2025/05/13/ai-needs-more-abundant-power-supplies-to-keep-driving-economic-growth
https://www.ethicalconsumer.org/technology/conflict-minerals-tech-goods-home-appliances

Appendix B. Energy Consumption Considerations

Computational load and energy cost of this thesis’ work. As discussed in C.-J. Wu
et al. (2022), data preparation and early experiments can be a significant part of energy
consumption. We started using the hybrid cluster of Université de Lille in the second half
of this PhDwork, and the jobs history can be used for estimating the energy consumption
of experiments and models’ training. We gathered the history of 456 past jobs, as well
as the server node it was ran on. Using the cluster’s documentation, we determined the
CPU and GPU hardware (if any) on each node, and obtained their Thermal Design Power
(TDP)3 as suggested in Holzapfel et al. (2024). Based on the duration of each job and
the TDP values, we obtain a total CPU energy consumption of 271 kWh and 276 kWh for
GPUs, so an average per job of 0.6 kWh for each hardware type. Note that those values
include many steps of the development of an AI model, like feature extraction and data
processing, experiments for training, final training and inference on test sets. Considering
all the steps included, those values are comparable to the ones discussed inHolzapfel et al.
(2024). Nonetheless, they are fairly important, since the daily electricity used per person
in France is around 6 kWh.4 Besides, it is worth noting that those estimates are only for
the second half of this PhD, so doubling the CPU energy consumption (we did not use
GPUs in the first half of this PhD) might be closer to the actual value.5 Assuming a higher
bound of 1 MWh for the entirety of this PhD work and 45 g CO2eq. per kWh6 in France,
we can estimate the corresponding carbon emissions as 45 kgCO2eq.. This is equivalent to
0.03 of the emissions of a round-trip by plane between Paris and New York, or travelling
414 km by car.7 Even if it is worth noting that it might be much more in countries where
the electricity has a higher carbon intensity, the energy consumption is still high.

When it comes to number of FPOs, values are obtained manually for some architec-
tures, or automatically using theperfmonitoring tool. Results are summarised Table B.1.
The FPOs of some pre-processing tasks are reported to show that even when a model is
simple, the data preparation can be costly (even though it can usually be computed only
once for any number of inference passes). Some values are also for a single prediction
or forward pass, while the actual task might need several. For rhythm guitar continu-
ation for instance (chapter 8), the transformer usually generates a few hundred tokens.
Likewise, while estimating the difficulty of learning a new song only requires 40 FPOs,
finding the best song requires processing the entire catalogue of over 1000 possibilities
(chapter 4). Besides, the number of FPOs does not always directly correlate with the du-
ration of execution (Schwartz et al. 2020), which can be an important aspect in production
settings.

3All values taken from https://www.techpowerup.com/, accessed in May 2025.
4https://www.data.gouv.fr/fr/reuses/consommation-par-habitant-et-par-ville-delectricite-en-france/, accessed

in May 2025.
5This might actually be a high estimate, since multiple jobs can run at once on the same node of the

cluster, and not all jobs used the nodes at full capacity.
6Average French carbon intensity between 2010 and 2024 https://analysesetdonnees.rte-france.com/bilan-

electrique-2024/emissions#Analysehistorique, accessed in May 2025.
7https://impactco2.fr/outils/comparateur, accessed in May 2025

214

https://www.techpowerup.com/
https://www.data.gouv.fr/fr/reuses/consommation-par-habitant-et-par-ville-delectricite-en-france/
https://analysesetdonnees.rte-france.com/bilan-electrique-2024/emissions#Analysehistorique
https://analysesetdonnees.rte-france.com/bilan-electrique-2024/emissions#Analysehistorique
https://impactco2.fr/outils/comparateur

Appendix B. Energy Consumption Considerations

Table B.1: Summary of the number of Floating-Point Operations for the tasks discussed
in this thesis.

Model/Program FPOs

Parsing a .gpif file ∼ 150 000

Bends - decision tree prediction 29
Bends - multi-layer perceptron forward pass 9048
Bends - extracting features from one tablature ∼ 400 000

Chord Diagrams - extracting chord diagram information from a tab ∼ 1 × 106

Chord Diagrams - multi-Layer perceptron forward pass 50 400

Rhythm Guitar Continuation - training data pre-processing 254 × 106

Rhythm Guitar Continuation - transformer forward pass (one token) ∼ 342 × 103

Rhythm Guitar Continuation - baseline forward pass (all output) 590 × 103

Bass Tablature Generation - forward pass (one token) ∼ 24 × 109

Difficulty estimation of learning a new song 40

Tablature Difficulty - features extraction from one tablature ∼ 107 × 106

Finally, the largest model was used for bass generation and requires several orders of
magnitude more FPOs for a single forward pass, around the highest values measured in
(Schwartz et al. 2020). This model would thus benefit greatly from performance improve-
ments techniques such as the ones discussed hereafter.

Perspectives for performance improvements. While honing research practices to re-
duce the amount of costly preliminary experiments is still one of the best options, other
alternatives can be studied to reduce the computational cost of AI models. Some of the
models presented in this thesis could be considered “frugal” (Bas 2020) because of the lit-
tle amount of operations they require, or because models are relatively small when com-
pared to standard NLP models. However, there are ways to reduce further the computa-
tional load of AI models. Such methods were not applied in this thesis, but are discussed
here as possible future improvements. Because the models presented are ultimately de-
signed to be used by many, it is especially important to reduce the cost of inference (C.-J.
Wu et al. 2022). For Neural Networks, their size in memory and computation time can
often be reduced through pruning, a practice consisting in removingweights and parame-
ters from amodel if they contribute little to the computation (Blalock et al. 2020). Pruning
has been reported to be able to halve the size of a network in memory as well as the com-
putation time, without much loss of performance (Blalock et al. 2020). Another common
technique for reducing computational load is quantisation. Libraries like Pytorch often
use 32 bits for storing values (default value also used in this work), but there are times
where such a resolution is not needed. Reducing the precision of a DL model can reduce

215

Appendix B. Energy Consumption Considerations

its size in memory and its computation time by four times or more (Gholami et al. 2021).
Applying pruning or quantisation to the bass tablature generationmodelwould also be an
improvement worth pursuing, as the transformer used is large and require several dozen
seconds to generate a tablature, on GPU.Network distillation could also be used (Sanh et al.
2020), which consists in training a smaller model from a pre-trained larger one. Distilla-
tion has been reported to speed generation up to 18 times in some cases (Novack et al.
2025). It might also be worth reflecting on the amount of data used for training models
because, while music is complex to replicate by digital models, not all songs might be
relevant for the task at hand. For instance, a model focusing on singable pop melodies
might not require rock, metal, classical, or jazz songs that could be filtered out of a large
dataset for faster training.

216

C

Legal Considerations in Generative Music
AI

The core of this PhD work has been to develop AI methods to assist guitarists in their
learning and composition practices. However, using AI models in art fields, especially
generative ones, has spurred debates on the way copyrighted materials can be used for
training (commercial) AImodels. The debatesmainly focus on two aspects: theway copy-
righted materials might be used without the creators’ consent;1 and the tendency of gen-
erative AI systems to produce outputs suspiciously similar to said copyrighted materials,
often compared to plagiarism (Cooper et al. 2024). After briefly presenting how copyright
is defined (in Europe) and how it relates to AI models, those two aspects are discussed in
relation to this thesis’ contributions.

On copyright legislation. Let us start with the definition of copyright from the World
Intellectual Property Organisation (WIPO):2

Definition (Copyright) Copyright (or author’s right) is a legal term used to describe the rights
that creators have over their literary and artistic works. Works covered by copyright range from
books, music, paintings, sculpture, and films, to computer programs, databases, advertisements,
maps, and technical drawings. BOOK-OPEN

With that definition, we can deduce that all data used in this thesis is copyrighted.
Besides, copyright in the European Union (EU) holds for 70 years after the death of the
creator.3 The music contained in the mySongBook database, the DadaGP dataset, the
songs used by the GSC start-up or the songs of our Tablature Difficulty dataset are thus
still copyrighted, apart from a few exceptions of classical or jazz music. In addition to

1It is based on this suspicion that major music record companies are suing Suno and Udio, two AI music
generation services (RIAA 2024)

2https://www.wipo.int/en/web/copyright, accessed in May 2025.
3https://europa.eu/youreurope/business/running-business/intellectual-property/copyright/index_en.htm,

accessed in May 2025.

217

https://www.wipo.int/en/web/copyright
https://europa.eu/youreurope/business/running-business/intellectual-property/copyright/index_en.htm

Appendix C. Legal Considerations in Generative Music AI

the compositions being copyrighted by the original composers, the transcriptions them-
selves might also be copyrighted by the transcribers, if some creativity is deemed to have
happened in the transcription process (Stokes 2019, p. 34).

Copyright is commonly split betweenmoral rights and economic rights. InWIPO (1979),
moral rights are defined as:

Definition (Moral Rights - Berne Convention, Article 6bis) Independently of the author’s
economic rights, and even after the transfer of the said rights, the author shall have the right to
claim authorship of the work and to object to any distortion, mutilation or other modification of,
or other derogatory action in relation to, the said work, which would be prejudicial to his honor or
reputation. BOOK-OPEN

Moral rights allow authors to object to any alteration made to their work, depending
on how it is implemented in each country (the EU does not impose rules on those rights).
Economic rights are related to the ability to earn money from one’s work:4

Definition (Economic Rights - EU Copyright Rules) Rights that enable rightholders to con-
trol the use of their works and other protected material and be remunerated for their use. They nor-
mally take the form of exclusive rights, notably to authorise or prohibit the making and distribution
of copies as well as communication to the public. Economic rights and their terms of protection are
harmonised at EU level. BOOK-OPEN

With such definitions, rightholders have a say in most usage people can make of their
creations, but a few exceptions have been made for the modern practice of “text and data
mining”. In the Directive (EU) 2019/790 on copyright in the Digital Single Market (DSM
Directive), the EU allowed public research organisations to use any copyrighted data in-
definitely, and access cannot be prevented by rightholders (Dornis et al. 2025).

Use of copyrighted data without consent. Moral rights could be interpreted as a way
for creators to refuse that their creations are used for training AImodels. Economic rights
would also be involved if the resulting model is used in a commercial manner. How-
ever, the EU DSM directive explicitly discards those possibilities for Text and Data Min-
ing (TDM) applications. Putting aside the moral consideration of using artists’ work for
training AI models even if they might object against it, it is therefore legal in most cases.
Nevertheless, while some researchers in law believe that the TDM exception also applies
to generative AI models (C. J. Craig 2024), others consider this matter unresolved (Dornis
et al. 2025). The question of whether the TDM exception can apply to music generative AI
might be answered in the near future with justice decisions on GEMA (German “Society
for musical performing and mechanical reproduction rights”) suing SUNO and OpenAI
for copyright infringement.5

4https://digital-strategy.ec.europa.eu/en/policies/copyright, accessed in May 2025.
5https://www.gema.de/en/news/ai-and-music/ai-lawsuit, accessed in May 2025.

218

https://digital-strategy.ec.europa.eu/en/policies/copyright
https://www.gema.de/en/news/ai-and-music/ai-lawsuit

Appendix C. Legal Considerations in Generative Music AI

In this thesis, studying guitar playing techniques (chapter 6), the most used guitar
chord diagrams (chapter 7), or why guitar songs are difficult (chapters 4 and 5) can safely
be considered data mining. However, generating bass tablatures (chapter 9) or possi-
ble continuation of rhythm guitar tablatures (chapter 8) are clear generative tasks that
might not be eligible to the TDM exception andwould thus require explicit consent of the
rightholders. TheDadaGPdatasetwas used for both those tasks and, as identified inMor-
reale et al. (2023) and acknowledged by Pedro Sarmento in his PhD thesis (Sarmento 2024,
pp. 168–172), tablatures were scraped from public online data without their owner’s con-
sent, using them for training generative models is therefore permitted only if the TDM
exception holds. Apart from the legal aspects, there are also moral considerations that
the MIR community is discussing increasingly, and some researchers are advocating for
a change in the way datasets are created and used in the community (W. Chen et al. 2019;
Morreale et al. 2023), by refraining from scraping online data and putting artists back in
the loop. But the “cultural relativity” of copyright should not be disregarded, and legal
and “moral” aspects might not always align (Holzapfel et al. 2018). We agree that the
MIR community would benefit from better communicating with artists and assembling
datasets where consent has been obtained for asmuch use-cases as possible. However, we
also agree with C. Craig (2022) that training AI models on art works should not be con-
sidered possible copyright infringement (regardless of TDM exceptions). Indeed, such
AI models only use their training data as a source of information and not “as a work of
authorship”. Nevertheless, it can happen that a generative AI model replicates part of its
training set almost identically, which then raise questions of possible plagiarism.

Risks of Plagiarism. Plagiarism is one type of copyright infringement that has been at
heart of many complex music-related lawsuits (Yuan et al. 2023), accusations of alleged
plagiarism – or uncredited copying – regularly hitting famous artists, like with Tempo
Music Investments v. Miley Cyrus for her song Flowers (Snapes 2024). Generative AI
models, like human composers to some extent (Shiga 2016), are prone tomemorisation be-
haviours (Dornis et al. 2025) where parts of the training data are reproduced identically.
Because of this memorisation risk, an AI model could possibly generate plagiarising con-
tent. Indeed, even if the training data was acquired and used legally, reproducing iden-
tically excerpts of an existing song is akin to plagiarism and thus considered copyright
infringement (Cooper et al. 2024), much like how sampling can often infringe copyright
(Challis 2009). While there is research that aims at limiting such memorisation (Satvaty
et al. 2025) or detecting when data replication occurs (Batlle-Roca et al. 2024), we have
not conducted such analyses in our work. Replicating the training data is not an issue in
specific tasks like the suggestion of bends (chapter 6) or of chord diagrams (chapter 7) but
becomes more prevalent when generating full bass tablatures (chapter 9) or even rhythm
guitar continuation (chapter 8). The latter task might prove less problematic because of
the way strumming and fretting data are separated: since the model only generates pick-
ing patterns, memorisation might only occur on that dimension, and picking patterns

219

Appendix C. Legal Considerations in Generative Music AI

are not copyrightable, like chord progressions. However, the bass tablature generation
model might be prone to generate bass lines identical or close to existing ones. Those
situations are not easy to solve because while we believe that AI models can be creative,
we also support C. J. Craig et al. (2021) in saying that an AI cannot claim authorship of its
generation. In that case, it is ultimately up to either the user who makes something out
of the output, or the model’s creators, to detect possible plagiarism. Solutions to assist
in the detection of possible plagiarism are still being studied, and might help compare
the generation with existing content (Batlle-Roca et al. 2024; de Prisco et al. 2016; Savage
et al. 2018). However, the “recognisability” of a music excerpt is highly subjective and so-
called “objective” measures might not adapt well to different cultural contexts or music
traditions (Holzapfel et al. 2018). For this reason, we believe it is important to develop
systems that can help humans quickly compare the generated content to existing songs,
but that decisions of possible infringement should never be made automatically to avoid
hindering creativity.

220

D

Guitar, AI, and Artists

With guitar players in mind, a major goal of this thesis has been to provide tools to assist
them in specific tasks of their creative process. However, the use of (generative) AImodels
in music creativity is not always seen positively, as illustrated by a letter signed by 200
artists (Artist Rights Alliance 2024):

“We call on all AI developers, technology companies, platforms and digitalmu-
sic services to pledge that theywill not develop or deployAImusic-generation
technology, content or tools that undermine or replace the human artistry of
songwriters and artists or deny us fair compensation for our work.

”While the letter argues that “AI has enormous potential to advance human creativity”,
the fear or artists being replaced by it (and not being paid in the process) is a core preoc-
cupation.

Impact on guitarist composers Regarding this thesis, we believe little risk of replacing
human artists exist. Indeed,whatwe studied aims at easing someparts of the creative pro-
cesswhenusing tablatures through controllable tools, rather than automate thementirely.
A part of our work focuses on specific aspects of tablatures like suggesting bends (chap-
ter 6) or chord diagrams (chapter 7). Bends are often considered characteristic of an artist’s
style (Herbst et al. 2024) and might be considered the results of creative choices (Rhodes
1961). Likewise, choosing chord voicings and corresponding positions on the fretboard
are creative decisions (Dickinson 2019; Koozin 2011). However, bends and chord dia-
grams are not enough to create full songs, and therefore suggesting them automatically
cannot “replace human artistry”. Other parts of our work study generative tasks that
could replace artistry to some extent, like rhythm guitar tablature continuation (chap-
ter 8) or bass tablature accompaniment generation (chapter 9). The generation of bass
tablatures might have the most detrimental effect on human composers, because it could

221

Appendix D. Guitar, AI, and Artists

actually replace bass players in the compositional process. Indeed, it could happen that
a guitarist composer uses the system to generate the bass tablature, rather than collabo-
rating with a bass player who might compose their own part. However, WPM is overall a
genre that calls for authenticity and is based on live performances (Kelly 2007; McKinna
2014), so bass players would still be expected to perform the generated tablatures live if it
ever reached that state. Besides, performers and songwriters/composers are not always
the same persons in WPM (Herbst et al. 2025), and composition is not always tackled by
all members of a band equally (Thorpe 2007). For this reason, we consider our bass gener-
ation system as a possible help to guitarist songwriters who do not play bass, or as a way
to generate ideas in collaborative composition phases (Thorpe 2007). Similar comments
apply to the rhythm guitar continuation model presented in chapter 8, but it has even
less risk to replace artists because the generation requires a prompt as well as a chord
progression. Because an artist will only be able to use the model after choosing those ele-
ments, some kind of human creativity will always be required. Finally, like for themodels
that suggest bends or chord diagrams, the generation models we presented do not gener-
ate full WPM songs as the resulting score would miss a melody and a drum/percussion
track. Overall, the tools proposed focus on specific tasks on the composition process and
might be most useful to beginner composers by facilitating some creative decisions that
can require time and dedicated skills. In doing so, they might even allow more guitarists
to be composers, rather than replacing any of them.

Impact onGuitar Teachers In this thesis, another part of the contributions focuses on as-
sisting guitar learning by recommendingnew songs (chapter 4) or automatically analysing
the difficulty of a tablature (chapter 5). While those tasks are not creative, a risk of replac-
ing guitar teachers might exist. We believe, however, that the risk is minimal because, as
L. Green 2002 puts it: “[p]opular musicians acquire some or all of their skills and knowl-
edge informally, [...], and with little help from trained instrumental teachers.” In that
situation, tools that can help musicians during informal learning are precious (Mesbur
2006; Owens 2017; Ruismäki et al. 2012). Besides, studies suggest that popular musi-
cians tend to learn both informally and with music teachers (L. Green 2002; Hess 2020;
Mesbur 2006), so facilitating autonomous informal learning has the potential to increase
learners’ motivation, without replacing formal teaching and human teachers. L. Green
(2002) for instance, observes that popular musicians will often learn in groups or be di-
rected by peers in their practice. Mesbur (2006) discusses how 6 adolescent girls learning
WPM were all trained by “musical mentors”, often through private lessons. Hess (2020)
also conducted interviews with musicians and gathered feedback supporting a desire for
more formal education in WPM. Overall, music learning research supports the idea that
informal autonomous learning in WPM is not exclusive of possibly formal learning with
music teachers. Finally, a music teacher contributes to much more than recommending
songs and analysing their difficulty, as they provide learners with technical explanations,
real-time feedback on their performance, assistance in learning gestures, etc.

222

Appendix D. Guitar, AI, and Artists

223

	Front Matter
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Acronyms

	Foreword
	Context of this Thesis
	Objectives and Motivation
	Outline of this Thesis
	Publications

	I Introduction
	1 Musical Background
	1.1 Guitar Tablatures
	1.1.1 From Lute Music to Digital Tablature Notation Software
	1.1.2 Tablature Digital Formats

	1.2 Modern Guitar Practice
	1.2.1 On Tablature Usage
	1.2.2 Composing Tablatures?
	1.2.3 Rhythm and Lead Guitar

	2 Machine Learning Models used in this Thesis
	2.1 About Artificial Intelligence
	2.2 Machine Learning Methods
	2.2.1 General Considerations
	2.2.2 Features in Machine Learning
	2.2.3 On Interpretability and Explainability
	2.2.4 Decision Trees
	2.2.5 Naive Bayes Models

	2.3 Deep Learning Methods
	2.3.1 Neural Networks and Perceptrons
	2.3.2 Recurrent Neural Networks
	2.3.3 Attention-Based Models

	3 State of the Art
	3.1 Tablature Data in MIR Research
	3.1.1 Tablature Datasets and Representations
	3.1.2 mySongBook
	3.1.3 The DadaGP Dataset
	3.1.4 Digital Representations of Tablatures
	3.1.5 Tablatures in Computational Musicology

	3.2 Assisted Guitar Composition and Tablature Generation
	3.2.1 Music Generation in the Audio and Symbolic Domains
	3.2.2 Tablatures in Symbolic Music Generation
	3.2.3 Automatic Tablature Arrangement
	3.2.4 Tablature Generation Models for Co-Creativity

	3.3 Computer Assisted Guitar Education
	3.3.1 Music Difficulty Estimation
	3.3.2 Games and AI-Models for Learning and Teaching Guitar

	II Assisted Guitar Pedagogy through Automated Difficulty Estimation
	4 Difficulty Adjusted Guitar Song Suggestion
	4.1 What makes learning new songs difficult?
	4.2 Difficulty-Annotated Corpus
	4.3 A Model for Personalised Suggestion
	4.4 Evaluation
	4.5 Discussions and Conclusion

	5 Features for Automatic Difficulty Assessment of Tablatures
	5.1 Objectives
	5.2 The Tablature Performance Difficulty Dataset
	5.3 Features for Playing Difficulty Estimation
	5.4 ML Models for Difficulty Analysis
	5.5 Conclusion and Perspectives

	III Assisting Guitar Tablature Composition
	6 Modelling and Predicting Guitar Techniques
	6.1 Introduction
	6.2 Digital Representation of Bends
	6.3 Bends Computational Analysis
	6.4 Bend Prediction Results
	6.5 Prediction Analysis
	6.6 Controllable Bends Suggestion
	6.7 Conclusions and Perspectives

	7 Guitar Chord Diagram Suggestion
	7.1 Suggesting Guitar Chord Diagrams
	7.2 Methodology
	7.3 Data
	7.4 Experiments
	7.5 Discussion
	7.6 Conclusion

	8 Picking Pattern Generation for Rhythm Guitar Tablature Continuation
	8.1 Picking Pattern Generation
	8.2 Data Preparation
	8.3 Transformer Model Training and Inference Details
	8.4 Quantitative Results
	8.5 Subjective Evaluation
	8.6 Conclusion

	9 Conditional Bass Tablature Generation
	9.1 Introduction
	9.2 Data Preparation
	9.3 Method
	9.4 Qualitative Analysis of the Generation
	9.5 Conclusion

	IV Conclusion and Perspectives
	Summary of Contributions
	Perspectives
	Bibliography
	A Evaluation Samples of the Rhythm Guitar User Study
	A.1 Sample 1
	A.2 Sample 2
	A.3 Sample 3
	A.4 Sample 4
	A.5 Sample 5

	B Energy Consumption Considerations
	C Legal Considerations in Generative Music AI
	D Guitar, AI, and Artists

	Back Matter

